logo search
UMKD

2.5.2 Силикатные материалы и изделия. Асбестоцементные изделия Силикатные материалы и изделия

Минеральные вяжущие еще не готовые строительные материалы. Основное свойство вяжущих, способность твердить после перемешивания с определенным количеством воды.

Реакция происходящие при твердении вяжущих главным образом реакции гидратации, присоединения части воды.

Наряду с цементами для изготовления растворов используют известь: воздушную и гидравлическую в виде гидратной пушонки, известкового теста или молока, а также в виде негашеной молотой извести. Известковое тесто должно иметь плотность не менее 1200 кг/м3 и содержать извести не менее 30 % по массе. Известь для штукатурных и облицовочных растворов не должна содержать непогасившиеся частицы, которые могут вызвать отколы (дутики) в затвердевшем слое. Поэтому свежегашеную известь пропускают через сито с ячейками 0,315 – 0,25 мм.

Строительная воздушная известь CaO – продукт умеренного обжига при 900-1300°С природных карбонатных пород CaCO3, содержащих до 8% глинистых примесей (известняк, доломит, мел). Обжиг осуществляют в шахтах и вращающихся печах. Наиболее широкое распространение получили шахтные печи. При обжиге известняка в шахтной печи движущийся в шахте сверху вниз материал проходит последовательно три зоны: зону подогрева (сушка сырья и выделение летучих веществ), зону обжига (разложение веществ) и зону охлаждения. В зоне подогрева известняк нагревается до 900°С за счёт тепла поступающего из зоны обжига от газообразных продуктов горения. В зоне обжига происходит горение топлива и разложение известняка CaCO3 на известь CaO и двуокись углерода CO2при 1000-1200°С. В зоне охлаждения обожжённый известняк охлаждается до 80-100°С двигающимся снизу вверх холодным воздухом.

В результате обжига полностью теряется двуокись углерода и получается комовая, негашёная известь в виде кусков белого или серого цвета. Комовая негашёная известь является продуктом, из которого получают разные виды строительной воздушной извести: молотую порошкообразную негашёную известь, известковое тесто.

Строительную воздушную известь различного вида используют при приготовлении кладочных и штукатурных растворов, бетонов низких марок (работающих в воздушно-сухих условиях), изготовлении плотных силикатных изделий (кирпича, крупных блоков, панелей), получении смешанных цементов Добавление в цементный раствор извести увеличивает пластичность, прочность и время охватывания.

Процесс твердения воздушной извести происходит в большей мере в результате карбонизации под воздействие углекислого газа воздуха. При твердении воздушной извести, образуются соединения, которые растворимы в воде.

Гидравлическую известь получают умеренным обжигом природных мергелей и мергелистых известняков при 900-1100°С. Мергель и мергелистый известняк идущие для производства гидравлической извести содержат от 6 до 25% глинистых и песчаных примесей. Её гидравлические свойства характеризуются гидравлическим (или основным) модулем (m), представляющим отношение в процентах содержания окислов кальция к содержанию суммы окислов кремния, алюминия и железа. Гидравлическая известь – медленно схватывающееся и медленнотвердеющее вещество. Её применяют для приготовления строительных растворов, низкомарочных бетонов, легких бетонов, при получении смешанных бетонов.

Гидравлическая известь обеспечивает твердение и сохранение прочности, как на воздухе, так и в воде. В чистом виде гидравлическая известь не применяется, а используется в смеси. Сырье для получения гидравлической извести по цвету темнее воздушной, так как имеет в качестве примеси глину.

Силикатный кирпич. Известково-песчаные растворы на основе воздушной извести являются малопрочными мед­ленно твердеющими и неводостойкими материалами.

Первым, кто получил достаточно водостойкий и прочный мате­риал на основе извести и песка, был немецкий ученый В. Михаэлис, который в 1880 г. предложил обрабатывать известково-песчаную смесь в атмосфере насыщенного пара при температуре 150...200°С.

Открытие Михаэлиса было использовано для производства, так называемого силикатного (известково-песчаного) кирпича. Современное производство силикатного кирпича заключается в следующем. Сырьевую смесь, в состав которой входит 90...92 % чистого кварцевогопес­ка, 8... 10 % молотой негашеной воздушной извести и некоторое количество воды, тщательно перемешивают и выдерживают до полного гашения извести. Затем из этой смеси под большим давлением (15...20 МПа) прессуют кирпич, который укладывают на вагонетки и направляют для твердения в автоклавы — толстостенные стальные ци­линдры диаметром до 2 м и длиной до 20 м с герметически закрываю­щимися крышками. В автоклаве в атмосфере насыщенного пара при давлении 0,8 МПа и температуре 180 °С кирпич твердеет 8... 14 ч. Из автоклава выгружают почти готовый кирпич, который выдерживают 10...15 дней в результате чего повышаются водостойкость и прочность кирпича.

Широко применяется воздушная известь, в изготовление автоклавных плотных ячеистых материалов при давлении 0,8-1,6 МПа и Т=200° изделий в виде панелей, блоков, элементов перекрытий , лестных маршей.

Температура обработки и общие энергозатраты при произ­водстве силикатного кирпича существенно ниже, чем при про­изводстве керамического, поэтому силикатный кирпич эконо­мически эффективнее, чем керамический.

Плотность обыкновенного силикатного кирпича несколько вы­ше, чем полнотелого керамического. Снижение плотности кирпича и камней достигается формованием в них пустот или введением в сырь­евую массу пористых заполнителей.

Силикатный кирпич, так же как и керамический, в зависимости от размеров может быть:

одинарный (полнотелый или с пористыми заполнителями) 250х120 х 65 мм;

утолщенный (пустотелый или с пористыми заполнителями) 250х120х88 мм (масса утолщенного кирпича не должна быть более 4,3 кг);

силикатный камень (пустотелый) 250х120х138 мм. Технология производства силикатного кирпича обеспечивает большую точность размеров.

Цвет кирпича — от молочно-белого до светло-серого. Выпускают лицевой кирпич с повышенными физико-механическими свойствами.Он может быть цветным с окрашенными в массе или по лицевым граням щелочестойкими пигментами в голубой, зеленова­тый, желтый и другие светлые тона.

В зависимости от предела прочности при сжатии и изгибе сили­катный кирпич и камни подразделяют на восемь марок: 300; 250; 200; 175; 150; 125; 100 и 75, имеющих средние значения прочности при сжатии соответственно не менее 30...7,5 МПа. Водопоглощение си­ликатного кирпича не менее 6 %. Марки по морозостойкости у кир­пича и камней — F50; 35; 25 и 15; для лицевых изделий морозостой­кость должна быть не ниже 25.

Существенным недостатком силикатного кирпича по сравнению с керамическим, является пониженная водостойкость и жаростой­кость.

Силикатный кирпич применяют для кладки наружных и внутренних стен надземных частей зданий и сооружений. Ис­пользовать его в конструкциях, подвергающихся воздействию воды (фундаменты, цоколь, канализационные колодцы и т. п.) и высоких температур (печи, дымовые трубы и т. п.), запрещается.

В настоящее вре­мя производятся крупноразмерные силикатобетонные автоклавные изделия почти всех элементов зданий и сооружений для сборного строительства (панели, плиты пере­крытий, элементы лестниц и др.) Из армированного силикатного бетона изготавливают конструкции не уступающие железобетонным.

Силикатобетонные изделия бывают тяжелые (аналогичные обыч­ному бетону) и легкие (на основе пористых заполнителей) или ячеи­стые (пено- и газосиликаты). Это безобжиговый кирпич изготавливают методом сухово прессования смеси - воздушная известь(5-10% ) и кварцевого песка(90-95%) при влажности 6-7%. Для повышения прочности применяют известково- кремнеземистые смеси. Марки кирпича М- 75, 100, 125,150,200,250.

Размеры 65х120х250 - одинарный и полуторный или модульный 88х120х250 пустотелый весом не более 4,3 кг. Средняя плотность 1700-2000кг/м3. морозостойкости Мрз-15, 25 и 50. силикатный кирпич не водостоек, и нестойкий к воздействию агрессивных вод, не огнестоек. Нельзя применять для кладки печей и труб. Изготавливают в автоклавах при температуре 170°С и давлении 4-6 атм.

На основе извести готовят известково-песчанные, известково - глинянные и известковое - зольные материалы. Такие изделия называют: безцементные или на основе силикатного бетона. Известь применяют в чистом виде или в смеси с мелом для побелок.

На долю силикатного кирпича приходится значительная часть всего объема стеновых материалов. Приведенные затраты на возведение стен из силикатного кирпича составляют примерно 84% по сравнению с необходимыми затратами при использовании керамического кирпича. Расход условного топлива и электроэнергии на производство силикатного кирпича в 2 раза ниже, чем керамического. На получение 1 тыс. шт. силикатного кирпича расходуется в среднем 4,9 ГДж тепла, половина которого составляет тепло на обжиг извести, а другая — на автоклавную обработку и другие технологические операции.

В производстве этого материала золы и шлаки ТЭС используются как компонент вяжущего или заполнителя. В первом случае расход золы достигает 500 кг на 1 тыс. шт. кирпича, во втором —1,5—3,5 т. Оптимальное соотношение извести и золы в составе вяжущего зависит от активности золы, содержания в извести активного оксида кальция, крупности и гранулометрического состава песка и других технологических факторов. При введении угольной золы расход извести снижается на 10—50%, а сланцевые золы с содержанием (CaO + MgO) до 40—50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но также способствует пластификации смеси и повышению в 1,3—1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков.

Кроме известково-песчаного силикатного кирпича выпускают известково-шлаковый иизвестково-зольный, в которых вместо песка частично или полностью используют промышленные отходы: шла­ки и золы теплоэлектростанций. Свойства этих видов кирпича аналогичны свойствам известко­во-песчаного.

Известково-кремнеземистое вяжущее в производстве силикатного кирпича получают совместным помолом комовой негашеной извести с золой и кварцевым песком. Суммарное содержание активных СаО и MgO в вяжущем – 30-40%, удельная поверхность- 4000-5000 см2/г, остаток на сите № 02 - не более 2%. Оптимальное содержание золы и шлака в силикатной смеси зависит от зернового состава и способа формования, возрастая с модулем крупности и циклом прессования.

Силикатный кирпич с добавками зол и топливных шлаков твердеет в автоклавах при давлении насыщенного пара 0,8-1,6 МПа. Рекомендуемая выдержка -4-8 ч. Получаемый материал по водо- и морозостойкости превосходит обычный силикатный кирпич, имеет меньшие значения водопоглощения и водопроницаемости, лучший товарный вид. Преимуществом кирпича из золосиликатной смеси оптимального состава является более низкая, чем у обычного, средняя плотность A=700-1800 кг/м3 против 1900-2000 кг/м3).

Используя золы ТЭС, получен пористый силикатный кирпич с такими свойствами: плотностью 1250-1400 кг/м3; прочностью 10-17,5 МПа, пористостью 27—28%, морозостойкостью 15-35 циклов.

Применение его позволяет уменьшить толщину наружных стен на 20, а массу -на 40% и существенно сократить расход тепла на отопление зданий.

Поэтому, строительные материалы на основе гипса, воздушной извести, требуются защищать от действия влаги, эксплуатировать в сухой среде или добавлять компоненты для повышения водостойкости.

Водопотребление минеральных вяжущих влияет на свойства получаемых материалов. Водопотребность определяется количеством воды необходимой для получения удобоукладываемой смеси. Если воды будет не достаточно, то смесь будет рыхлой, избыток приведет к растеканию массы. Значительное увеличении воды сказывается на свойствах искусственного камня – может вызвать образования крупных пор, сильную усадку, снижает прочность.