§ 9.4. Реконструкция зданий с применением сборно-монолитных встроенных систем
Сочетание преимуществ сборного железобетона с монолитным реализуется с помощью возведения встроенных систем, у которых в монолитном варианте выполняются внутренние поперечные и продольные несущие стены, а перекрытия - из сборного предварительно напряженного многопустотного настила. В сборном варианте используются также лестничные площадки, марши, объемные блоки сантехкабин и лифтовых шахт. Использование большепролетных (до 18 м) плит перекрытий позволяет не только снизить удельный расход материалов, но и повысить технологичность строительных процессов, а также создать свободные планировочные объемы значительных размеров. В то же время использование сборных перекрытий позволяет без значительных технологических перерывов осуществлять их нагружение, что весьма важно при организации поточного производства работ. Применение внутренних монолитных стен позволяет реализовать практически любую высоту этажей реконструируемых зданий.
На рис. 9.12 приведена конструктивно-технологическая схема встроенной сборно-монолитной системы. Она включает: внутренние поперечные и продольные монолитные стены; пристеночные железобетонные диафрагмы торцевых элементов зданий; многопустотный настил перекрытия; сборные элементы лестничной клетки и др. Расположение внутренних несущих стен осуществляется таким образом, чтобы площадь перекрытия была максимальной и приближалась к размерам квартир. Это обстоятельство позволяет на любом этапе эксплуатации осуществлять перепланировку помещений.
Рис. 9.12. Сборно-монолитная встроенная система 1 - монолитные внутренние несущие стены; 2 - многопустотный настил перекрытий; 3 - сборные ж/б лестничные марши и площадки; 4 - пристеночная железобетонная диафрагма; 5 - лифтовая шахта
Цикл встройки сборно-монолитной системы состоит в устройстве фундаментов, возведении монолитных поперечных и продольных стен, монтаже плит перекрытия и других встроенных элементов. Монолитные стеновые конструкции выполняют функции несущих стен и обеспечивают пространственную жесткость встроенной системы. Взаимодействие ограждающих конструкций с поперечными стенами повышает их пространственную жесткость и в ряде случаев несущую способность. Продольная монолитная стена может выполняться отдельными участками, тем самым обеспечивая получение больших перекрываемых площадей. В любом случае как внутренние поперечные, так и продольные стены должны размещаться соосно по всей высоте начиная с подвальной части здания.
В зависимости от грунтовых условий фундаментами под встроенную систему могут служить перекрещивающиеся ленты, плиты сплошного или кессонного типа в монолитном исполнении.
Основным условием создания фундаментов является учет восприятия нагрузок как встраиваемой части здания, так и надстраиваемых этажей. При этом существующее стеновое ограждение становится самонесущим.
Процесс реконструктивных работ требует использования специальных средств механизации для выполнения цикла нулевых работ: возведения монолитных фундаментов под внутренние несущие стены, поэтажного устройства встроенной системы с использованием различных опалубочных систем, монтажа сборных конструкций междуэтажных перекрытий, объемных элементов сантехкабин, вентблоков и др.
Технология возведения вертикальных стеновых конструкций
Для возведения вертикальных стеновых конструкций наиболее рационально применение укрупненных опалубочных щитов системы Мева, Дока, алюминиевой опалубки ЦНИИОМТП и др. Их конструктивные особенности позволяют возводить внутренние стены с различной высотой этажа за счет использования доборных элементов. Сравнение опалубочных систем может быть оценено по уровню технологичности процессов укрупнения, сборки и демонтажа. Этот фактор определяется конструктивными особенностями замковых соединений, уровнем их надежности и трудоемкости выполнения работ. Наиболее важными показателями опалубочных систем являются обеспечение плотности стыковых соединений, исключение деформативности от действия гидростатического и динамического давления бетонной смеси, а также их оборачиваемость.
На рис. 9.13 приведены технологические схемы возведения монолитных конструкций, типы опалубочных систем и узлы взаимодействия наружных и внутренних стен с ограждающими конструкциями.
Рис. 9.13. Конструктивно-технологическая схема устройства встроенной сборно-монолитной системы с широким шагом внутренних стен (а), узлы взаимодействия наружных (б) и внутренних (в) стен с ограждающими конструкциями, укрупненные опалубочные щиты для возведения линейных участков (г) и при пересечении стен (д) 1 - опалубочный щит; 2 - плита перекрытия; 3 - анкеры из арматурной стали; 4 - распорные анкеры; 5 - существующая стена; 6 - крепежный элемент
Оснащение щитов системой подкосов обеспечивает быструю выверку в проектное положение, а наличие рабочих площадок создает удобства производства работ по укладке и уплотнению смесей.
При устройстве внутренних несущих стен подбор комплекта опалубки осуществляется таким образом, чтобы без переналадки щитов производить цикл возведения как по этажам здания, так и посекционно. Технологический процесс включает арматурные, опалубочные работы, подачу, укладку и уплотнение смесей, тепловую обработку для ускоренного набора прочности бетоном и демонтаж опалубки.
Выполнение арматурных работ наиболее рационально осуществлять из отдельных стержней с ручной вязкой. Такое решение исключает использование сварных соединений, что обеспечивает более высокую надежность монолитных конструкций. Для создания проектного геометрического положения армокаркасов используются различные системы фиксации в виде полимерных или бетонных фиксаторов. Их установка препятствует смещению арматурного заполнения в процессах укладки и уплотнения бетонных смесей и обеспечивает требуемый защитный слой.
Для создания планировочных решений при возведении внутренних стен предусматривается использование проемообразователей. Они устанавливаются на внутренней поверхности опалубочных щитов с использованием специальной системы крепления. Конструктивное решение проемообразователей обеспечивает их геометрическую изменяемость, что позволяет производить распалубку без нарушения торцевых элементов.
Бетонирование стен осуществляется по захваткам. Их длина определяется из условия непрерывной укладки смеси и составляет 10-12 м. Каждая захватка ограничивается разделительной сеткой, которая обеспечивает монолитность соединений отдельных элементов стен.
Укладка смеси осуществляется послойно с толщиной слоев 0,5-0,6 м с обязательным уплотнением глубинными вибраторами. Интенсивность подачи и укладки бетонной смеси должна соответствовать производительности глубинных вибраторов J £ Пв×n; J = v×ty; илигдеv - скорость подачи бетонной смеси, м3/ч; ty - время укладки смеси в опалубку; R - радиус действия вибратора; h - высота слоя бетонной смеси; tв - время уплотнения; кв - коэффициент, учитывающий потери времени на перестановку вибратора; п - количество вибраторов.
В зависимости от консистенции бетонной смеси время уплотнения может иметь различные значения. Оно определяется экспериментальным путем и оптимизируется в зависимости от подвижности бетонной смеси и толщины бетонируемой конструкции.
Повышение времени уплотнения может привести к расслоению смесей, а недостаточная продолжительность вибродействия - к неоднородному уплотнению слоев.
При бетонировании тонкостенных элементов необходимо использовать вибраторы с диаметром наконечника, не превышающим 1/3-1/4 толщины.
Использование укрупненных опалубочных щитов позволяет снизить трудоемкость и продолжительность работ. В зависимости от степени укрупнения повышаются технологичность опалубочных систем и более рациональное использование крана по грузоподъемности.
Технологические потоки возведения внутренних стен предусматривают ритмичное производство арматурных и опалубочных работ. При этом опережающим процессом являются арматурные работы. Обеспечение заданного ритма производства работ достигается подбором количества рабочих, занятых на армировании конструкций. Цикл арматурных работ на захватке должен соответствовать циклу опалубочных
,
где ∑Тар, ∑Ton - суммарная трудоемкость арматурных и опалубочных работ; , - нормативная трудоемкость арматурных и опалубочных работ; n1, n2 - количество рабочих, занятых на соответствующих процессах.
Оценка технологических циклов арматурных и опалубочных работ показывает, что их равенство может быть достигнуто путем определения расчетного состава рабочих, занятых на арматурных работах:
Наибольшую трудоемкость работ представляют процессы армирования и устройства опалубки торцевых стен, а также сопряжений с продольными стенами. Эти процессы требуют разработки специальной системы крепления как арматурного заполнения, так и опалубочных щитов.
Наиболее рациональным является устройство анкерных соединений, устанавливаемых в стенах. Количество распорных анкеров, их глубина установки и геометрические параметры определяются исходя из технологических нагрузок от укладки и уплотнения бетонной смеси и физико-механических характеристик стенового ограждения.
Анкер рассчитывается исходя из восприятия усилий от гидростатического и динамического давления бетонной смеси Рг.б + Рд.б. Усилие, воспринимаемое анкером от выдергивания, определяется исходя из физико-механических характеристик материала стен, диаметра анкера, глубины заделки h. Расчетное усилие на выдергивание за счет создания распора и сил трения может быть оценено по зависимости
где RСТ - фактическое сопротивление кладки стены; m1 - коэффициент условия работы (m1 = 1,2-1,3); Аб - площадь сечения стяжного элемента; f - коэффициент трения металла по камню {f ≈0,3); mn - коэффициент надежности работы анкера, тп ≈ 1,8-2,5; γ - плотность бетонной смеси; Н - высота столба бетонной смеси; Рд - динамическая составляющая давления от работы вибраторов.
Глубина заделки анкеров зависит от физико-механических характеристик материала стен и составляет 4,0-6,0 . Для стен из кирпича марки 75 диаметр анкера составляет 20 мм, глубина заложения 100-120 мм, с разрушающей нагрузкой 6-15 кН.
Большое влияние на качество последующих монтажных работ оказывает создание единого монтажного горизонта опорных поверхностей внутренних стен. Отклонения данных параметров могут привести к снижению опорных частей сборных плит и нарушению условий передачи нагрузки. Применение специальных бортовых элементов щитовой опалубки стен позволяет получать высокоточные опорные поверхности. Принцип создания таких элементов состоит в том, что при окончании цикла укладки бетонной смеси осуществляется поворот на 90° откидных бортовых элементов опалубки. В результате передачи энергии колебаний от вибратора бортовому элементу происходят перемещение избытка бетонной смеси в межпалубную зону и образование горизонтальной.
Использование таких приспособлений показало, что получение горизонтальных поверхностей обеспечивает высокую точность монтажа плит перекрытий, исключающую перепады, пропеллерность и другие дефекты, существенно снижающие качество потолочных поверхностей.
Интенсивность бетонных работ достигается путем снижения цикла набора распалубочной прочности за счет введения в бетонную смесь добавок Линголан-2 и тепловой обработки греющими проводами. Монтаж плит перекрытия осуществляется при наборе прочности не менее 50 % проектной.
Организация производства работ
Организация производства работ предусматривает создание ритмичных потоков, обеспечивающих их максимальное совмещение во времени. В качестве захватки принимается секция жилого дома. Ведущим процессом является цикл возведения монолитных конструкций. Из этого расчета подбирается комплект опалубки на секцию.
Технологические циклы производства работ приведены на рис. 9.14.
Рис. 9.14. Технологическая последовательность возведения встроенной сборно-монолитной системы при реконструкции 3-секционного жилого дома Цифрами показана очередность выполнения работ: I - возведение монолитных стен; II - монтаж плит перекрытия, лестничных маршей и площадок; III - установка объемных блоков сантехкабин и лифтовых шахт
На первой захватке показан технологический этап возведения внутренних монолитных стен. Он состоит из процессов подготовки наружных и внутренних стен, устройства арматурного заполнения, установки опалубочных щитов, проемообразователей, системы крепления щитов к торцевым стенам, подачи и укладки бетонной смеси.
Комплекс монолитных работ осуществляется с использованием башенного крана. В связи с ограниченным объемом бетонных работ наиболее рациональными являются подача и укладка смеси по схеме «кран-бадья».
После приобретения распалубочной прочности осуществляются демонтаж опалубки и перестановка на прилегающую захватку.
Используется горизонтально восходящая схема производства работ, предусматривающая последовательное поэтажное выполнение работ монолитного цикла.
В зависимости от интенсивности набора прочности бетоном возможно использование двух комплектов опалубочных систем, что создает предпосылки непрерывного производства работ монтажного цикла.
На второй захватке приведены технологическая схема и последовательность монтажа сборных конструкций. Она включает устройство стыковых соединений плит перекрытия, лестничных маршей и площадок.
При выполнении монтажных работ особое внимание уделяется сохранению монтажного горизонта, омоноличиванию анкерных элементов плит перекрытия, заделке швов, сварным соединениям лестничных маршей и площадок.
На третьей захватке показаны технологические процессы монтажа объемных элементов лифтовых шахт, сантехкабин, вентиляционных блоков и др. Выполнение данного цикла работ связано с подготовкой площадок для монтажа объемных элементов, стыковых соединений и проектного геометрического положения каждого монтируемого элемента.
Окончание монтажного цикла работ на захватке дает основание для производства работ по устройству внутренних монолитных стен очередного этажа.
Ритмичность производства работ связана с непрерывным материально-техническим обеспечением строительных процессов: доставкой и складированием сборных конструкций, ритмичной подачей бетонной смеси, наличием расчетного количества опалубки, средств тепловой обработки, обеспеченностью рабочими кадрами требуемой квалификации и др.
Для выполнения цикла работ по устройству встроенной системы разрабатывается проект производства работ. Особое внимание уделяется технологическим картам, где отдельной позицией представляются материалы по контролю качества работ инструментальными средствами, подбору средств механизации и инвентаря, обеспечивающих интенсивное производство работ на всех этапах устройства встроенной системы.
Комплексная механизация технологических процессов требует создания необходимых условий на строительной площадке: размещения и привязки башенного крана, определения зон складирования сборных конструкций; площадок для приема бетонной смеси, по укрупнению опалубочных щитов, приему и складированию арматуры и др.
Для обеспечения нормальной работы технологических потоков устраивается сеть временных дорог, осваиваются площадки для размещения инвентарных зданий бытовой зоны, закрытые складские помещения и мастерские.
Перечисленные виды работ отражаются при формировании строительного генерального плана с соответствующими технологическими расчетами (рис. 9.15).
Рис. 9.15. Организация строительной площадки на основной период СМР а - фрагмент стройгенплана; б - разрез на период надстройки этажей; узел «А» - схема наружных самонесущих стен из газосиликатных блоков с облицовкой из керамического кирпича: 1 - плита перекрытия; 2 - термовкладыш; 3 - газосиликатные блоки; 4 - облицовка из кирпича
Стесненность строительной площадки предусматривает размещение технологически необходимых средств механизации, приобъектной зоны, временных зданий, сетей и дорог.
При выполнении работ в условиях стесненной городской застройки особое внимание уделяется безопасным методам производства работ, выявлению опасных зон и разработке мероприятий по снижению негативного влияния на прилегающие территории жилой зоны.
Примерный график производства работ по устройству встроенной системы приведен в табл. 9.1. Принята горизонтальная схема развития потоков с совмещением работ по захваткам (секциям). Такое решение позволяет увязать технологические потоки, обеспечив фронт работ по возведению монолитных стен и монтажу сборных конструкций перекрытия, выполнению работ по надстройке здания. Совмещение работ обеспечивает их непрерывность и цикличность.
Таблица 9.1
График производства работ включает: подготовительный период; работы нулевого цикла; возведение монолитных конструкций этажа, монтаж сборных и объемных элементов. Для создания ритмичного потока осуществляются подбор опалубочной системы объемом на две захватки, выполнение монтажных работ с технологическим циклом, равным по продолжительности возведению внутренних стен.
Изменение кратности ритма производства работ наиболее характерно при надстройке здания, когда кроме перечисленных видов работ выполняются технологические процессы, связанные с возведением наружного стенового ограждения.
При выполнении строительных процессов ведется контроль качества работ на всех этапах возведения встроенных конструкций и надстраиваемых этажей: приемочный контроль качества сборных конструкций, деталей, материалов и полуфабрикатов; соблюдение условий их хранения и складирования; геодезический контроль производства работ; температурный контроль и контроль степени набора прочности бетоном и др.
Наличие объекта в жилой зоне требует выполнения мероприятий и технических решений, обеспечивающих безопасное выполнение работ и исключающих негативное воздействие на людские и транспортные потоки.
Рассмотренная технология ведения работ экономически целесообразна как для единичных зданий застройки, так и при условии комплексной реконструкции квартала застройки, что позволяет организовать межобъектные специализированные потоки, создать единую базу подготовки производства.
- Реконструкция жилых зданий Часть I Технологии восстановления эксплуатационной надежности жилых зданий
- Реконструкция жилых зданий Часть II Технологии реконструкции жилых зданий и застройки
- Содержание
- Введение
- Глава 9 реконструкция жилого фонда ранних построек
- § 9.1. Технология встроенных систем
- § 9.2. Встроенная система из сборного каркаса
- § 9.3. Сборно-монолитная встроенная каркасная система с преднапряженными несущими конструкциями
- § 9.4. Реконструкция зданий с применением сборно-монолитных встроенных систем
- § 9.5. Технология реконструкции зданий с использованием безбалочной каркасной системы
- График производства работ по устройству сборно-монолитных перекрытий
- § 9.6. Реконструкция жилых зданий с применением встроенных монолитных систем
- Графики производства работ по устройству монолитного перекрытия при использовании мягких (I) и жестких (II) режимов прогрева бетона
- § 9.7. Надстройка зданий
- § 9.8. Реконструкция жилых зданий с пристройкой объемов
- Глава 10 технологии реконструкции малоэтажных зданий первых массовых серий
- § 10.1. Зарубежный опыт реконструкции и модернизации жилых зданий
- § 10.2. Общая характеристика малоэтажного жилого фонда рф
- § 10.3. Конструктивно-технологические решения
- Конструктивно-технологические решения реконструкции жилых зданий массовых серий Конструктивно-технологические решения реконструкции жилых зданий массовых серий
- § 10.4. Надстройка мансардными этажами
- Типы мансардных этажей
- График производства работ по возведению мансардного этажа
- График производства работ по возведению мансардного этажа
- § 10.5. Пристройка лождий, эркеров и лифтовых шахт
- Характеристика пристраиваемых объемных блоков
- § 10.6. Индустриальные технологии надстройки и обстройки зданий из объемных блоков
- Технические характеристики средств механизации
- График производства работ по реконструкции жилого дома с обстройкой и 2-этажной надстройкой
- Основные типы объемных блоков
- § 10.7. Комплексная реконструкция зданий с пристройкой объемов и двухэтажной надстройкой
- График производства работ по комплексной реконструкции 3-секционного жилого дома
- § 10.8. Реконструкция малоэтажных домов с перепланировкой помещений
- §10.9. Особенности производства работ при реконструкции жилых зданий без отселения жильцов
- § 10.10. Технологии реконструкции зданий с уширением корпусов и надстройкой этажей
- Наземная часть пристроек
- Технологическая последовательность производства работ при реконструкции 5-секционного жилого дома серии I-515
- Технико-экономические показатели
- Глава II реконструкция 9-этажных жилых зданий
- § 11.1. Конструктивно-технологические решения по реконструкции 9-этажных жилых зданий
- § 11.2. Технологии надстройки зданий
- § 11.3. Двухэтажная надстройка 9-этажных кирпичных зданий
- § 11.4. Надстройка кирпичных и блочных зданий с использованием складывающегося рамного каркаса
- Примерный график производства работ по надстройке 3-секционного жилого дома
- § 11.5. Особенности надстройки зданий со скатной кровлей
- § 11.6. Реконструкция жилых зданий с пристройкой объемов
- § 11.7. Оценка инвестиционных проектов
- Глава 12 технологии перемещения зданий
- § 12.1. Общие положения
- § 12.2. Технология передвижки зданий
- Распределение затрат на передвижку зданий по видам работ, %
- § 12.3. Основные положения по технологическим расчетам и подбору средств передвижки зданий
- § 12.4. Опыт передвижки зданий в Москве
- § 12.5. Совершенствование технологии передвижки зданий
- § 12.6. Технология вертикального подъема зданий
- § 12.7. Технологии исправления крена зданий
- Глава 13 демонтаж и снос строений
- § 13.1. Взрывной метод разрушения зданий
- § 13.2. Поэлементная разборка зданий
- § 13.3. Технология сноса крупнопанельных зданий
- Перечень машин и оборудования
- § 13.4. Оптимизация работы машин по демонтажу и разрушению зданий
- § 13.5. Технология переработки продуктов разрушения
- Глава 14 современные технологии реконструкции застройки городов
- § 14.1. Характеристика застройки городов
- § 14.2. Общие принципы реконструкции застройки
- § 14.3. Инженерная подготовка производства
- § 14.4. Внутриквартальные производственные базы
- § 14.5. Технологические особенности возведения многоэтажных вставок
- § 14.6. Возведение заглубленных сооружений с ограждением котлованов
- § 14.7. Возведение подземных сооружений способом «стена в грунте»
- § 14.8. Возведение заглубленных объектов по струйной технологии
- § 14.9. Технологии возведения заглубленных частей зданий и сооружений в сложных инженерно-геологических условиях
- § 14.10. Геотехническое сопровождение реконструкции зданий и застройки
- Заключение
- Список литературы