22. Сжатые элементы с большим эксцентриситетом и малым эксцентриситетом (принципиальные отличия). Случайный эксцентриситет.
Если сила N приложена вдоль оси элемента, т.е. центрально, то очевидно, что все сечение равномерно сжато, напряжения в бетоне и арматуре в предельной по прочности стадии достигают расчетных сопротивлений. При смещении N от оси в сторону арматуры S на величину эксцентриситета ео эпюра напряжений искривляется, напряжения в арматуре S уменьшаются: sc< Rsc. С увеличением ео появляется растянутая зона, а в арматуре S возникают растягивающие напряжения. Наконец, ео может достичь такого значения, при котором высота сжатой зоны х = хR, а в арматуре S напряжения возрастают до расчетного сопротивления s = Rs это и есть граница между большими и малыми эксцентриситетами, между двумя случаями расчета. Таким образом, случай больших эксцентриситетов (1-й случай расчета) возникает тогда, когда х хR, а арматура S полностью использует свою прочность на растяжение, т.е. s = Rs. Случай малых эксцентриситетов (2-й случай расчета) характерен тем, что x > xR, а напряжения в арматуре S могут быть сжимающими (0 sc Rsc), нулевыми или растягивающими (s < Rs). В обоих случаях, однако, напряжения в арматуре S достигают Rsc.
В процессе работы реальной конструкции всегда присутствуют случайные факторы, которые могут привести к смещению расчетной точки приложения силы N. Кроме того, из-за неоднородных свойств бетона (разная деформативность и прочность даже в пределах одного сечения) напряжения в сечении становятся неодинаковыми, что также приводит к смещению продольной силы. В сжатых элементах даже небольшой эксцентриситет приводит к неравномерности нормальных напряжений и к искривлению продольной оси, что опасно в смысле потери устойчивости.
Вот почему к эксцентриситету ео, полученному из статического расчета, добавляют случайный эксцентриситет еа, принимаемый не менее 1/600 длины элемента, не менее 1/30 высоты его сечения и не менее 10 мм. Следовательно, если по результатам статического расчета ео= 0 (центральное сжатие), то назначают ео = еа. Исключение составляют только элементы статически неопределимых систем, но и в них расчетный эксцентриситет принимают не менее случайного.
23. Косвенное армирование. Понятие: расчетная длина. Понятие гибкость. Что определяет разрушение внецентренно-сжатого элемента? Общее и различие причин возможного разрушения по сравнению с изгибаемыми ж/б элементами.
Для повышения прочности бетона можно применить косвенное армирование. Несущая способность повышается за счет расположения поперечной арматуры с малым шагом как по длине элемента, так и по его сечению. Косвенная арматура в виде поперечных сварных сеток или спиралей, охватывающих снаружи продольные стержни, препятствует поперечному расширению бетона и повышает его сопротивление продольному сжатию. Разрушение элемента происходит, когда косвенная арматура достигает предела текучести. Следует, однако, помнить, что сетки косвенного армирования затрудняют укладку и уплотнение бетона. Кроме того, косвенное армирование эффективно только при малых эксцентриситетах и при небольшой гибкости элементов.
Расчетная длина – это длина изгиба. Расчетная длина l0 вычисляется по формуле:
l0 = μl, где μ — коэффициент, зависящий от условий закрепления стрежня, а l — геометрическая длина. Расчетная длина, также называется привиденной или свободной.
Г ибкость - способность стержня сопротивляться потере устойчивости при продольном изгибе. Гибкость стержня — отношение расчетной длины стержня l0 к наименьшему радиусу инерции i его поперечного сечения. Это выражение играет важную роль при проверке сжатых стержней на устойчивость. В частности, от гибкости зависит коэффициент продольного изгиба φ. Стержень с большей гибкостью, при прочих неизменных параметрах, имеет более низкую прочность на сжатие и сжатие с изгибом.
Характер разрушения внецентренно-сжатых элементов зависит от эксцентриситета приложения продольной силы и количества арматуры. В зависимости от напряжения в растянутой арматуре условно различаются два расчетных случая:
случай 1 - разрушение по арматуре - характеризуется достижением растянутой арматурой ее расчетного сопротивления;
случай 2 - разрушение по бетону - характеризуется достижением бетоном сжатой зоны его расчетного сопротивления.
Случай 1 наблюдается при относительно большом эксцентрисетете приложения нагрузки или небольшом количестве арматуры. В этом случае со стороны растянутой грани появляются трещины, которые при увеличении нагрузки развиваются, ширина их раскрытия увеличивается и напряжение в растянутой арматуре достигает предела текучести, а затем наступает разрушение сжатой зоны бетона.
Случай 2 наблюдается при небольшом эксцентрисетете приложения нагрузки или при большом количестве арматуры. В этом случае арматура со стороны менее напряженной грани сечения либо слабо растянута, либо сжата. Разрушение элемента начинается со стороны более сжатой грани. Напряжение в арматуре и в сжатом бетоне достигают предельных величин сопротивления.
Считается внецетренно-сжатый элемент почти также как и сжатый, но здесь учитываем сжимающую силу. Если в изгибаемом элементе разрушение рассматривают только в этих двух случаях, то в внецетренно-сжатом рассчитывают колонну на устойчивость. Устойчивость зависит от сечения колонны и нагрузки. Если колонна ниже то, при том же сечении она потеряет устойчивость при большей нагрузке. N критическое – та нагрузка при которой колонна потеряет устойчивость. N критическое зависит от характеристик элемента, геометрических параметров конструкции, от прочностных данных и т.д. N критическое высчитывается сравниваем с той силой, которая реально действует на конструкцию. Если реально действующая сила меньше N критического – то все хорошо. Чем ближе отношение N к N критическое к 1, тем больше опасность, значит чем больше η, тем больше возможность разрушения.
N/Nкрит<1
η=
N=e*η
- 1. Основы безопасности конструкций. Понятие о методах вероятностной оценки безопасности зданий посредством оценки однородности прочности бетона при проектировании и изготовлении конструкций и зданий.
- 3. Усадка бетона. От чего зависит? Физическая основа. Начальный модуль упругости. Местное смятие бетона.
- 4. Прочность бетона. Зависимость от возраста, скорости нагружения, условий твердения, масштабного фактора. Призменная прочность.
- 5. Классы, марки бетона. Принцип взаимосвязи. Расчетное сопротивление бетона. Деформативность бетона. Начальный модуль упругости бетона.
- 6. Ползучесть бетона. Ее влияние на напряжение в бетоне и арматуре. Влияние ползучести на предварительное напряжение растянутой арматуры.
- 7. Мягкая и твердая арматурная сталь. Текучесть стали. Условный предел текучести. Принципиальные отличия горячекатаной арматуры от высокопрочной.
- 8. Чем определяется расчетное и нормативное сопротивление арматуры растяжению?
- 9. Микроразрушение бетона. Как оценка этого параметра связана с оценкой прочности ж/б элементов при циклическом нагружении.
- 10. От чего зависит сцепление арматуры с бетоном? Чем характеризуется сцепление? Принципы эскизного конструирования анкеровки стали а-III: растянутой, сжатой, соответствующих стыков.
- 11. Какая польза от преднапряжения железобетона? Влияет ли преднапряжение на прочность конструкции?
- 12. Почему в качестве напрягаемой арматуры не применяют мягкую сталь? Почему в обычных конструкциях не применяют твердую сталь?
- 13. Чем ограничивается величина преднапряжений в арматуре? с какой целью потери напряжений разделяют на первые и вторые? Зависят ли потери напряжений от способа натяжения?
- 14. Три стадии напряженного деформированного состояния железобетонных элементов без предварительного напряжения.
- 15. Метод расчета по предельным состояниям. Сущность 1-го и 2-го предельных состояний. Решаемые задачи.
- 16. Классификация нагрузок. Расчетные и нормативные нагрузки. Степень ответственности зданий и сооружений.
- 17. Причины армирования балок и колонн. Особенности работы изгибаемых ж/б элементов перекрывающих один пролет и неразрезных балок, перекрывающих несколько пролетов.
- 18. Предельная высота сжатой зоны бетона. Основные понятия. Использование для оптимального проектирования. Относительная предельная высота сжатой зоны бетона.
- 19. Как меняется деформирование изгибаемых элементов при шарнирном или защемленном (жестком) закреплении концов изгибаемого ж/б элемента? Меняется ли при этом прочность элемента?
- 21. Основные схемы, используемые при анализе возможных причин разрушении ж/б элементов по наклонному сечению. Почему расчетное сопротивление поперечной и отогнутой арматуры меньше, чем продольной?
- 22. Сжатые элементы с большим эксцентриситетом и малым эксцентриситетом (принципиальные отличия). Случайный эксцентриситет.
- 24. Усилие концевых участков сжатых элементов – причины внимания к этому фактору. Особенности работы элемента без подобного усиления концевых участков.
- 26. Растянутые элементы. В каких конструкциях, выполненных из ж/б, наиболее ярко проявляется необходимость расчета на растяжение.
- 28. От каких факторов зависит кривизна? Понятие – кривизна и прогиб конструкции. Как эти понятия взаимосвязаны друг с другом?
- 29. Категории трещиностойкости. Какие факторы влияют на образование трещин в ж/б конструкциях?