§ 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
Наиболее эффективным методом повышения несущей способности оснований и фундаментов является устройство грунтоцементных свай и массивов по струйной технологии (Jet Grouting), который широко используется в зарубежной практике. Метод разработан в Японии в конце 70-х годов и получил развитие во многих странах. Лидерами в изготовлении технологического оборудования в Европе являются немецкие фирмы Keller, Bauer, итальянская Rodo, французская Колагранде и др. (рис. 6.7).
Рис. 6.7. Общий вид буровых установок струйной технологии закрепления грунтов а - для работ на открытых поверхностях; б - при производстве работ в стесненных условиях
Для усиления фундаментов внутри здания используется мини-установка SC-1 на гусеничном ходу фирмы Keller (ФРГ) (рис. 6.7,б). Ее габаритные размеры позволяют перемешаться через проем шириной 0,8 м и работать в подвальном помещении высотой не менее 2,8 м.
Первый опыт использования данной технологии в РФ был осуществлен при реконструкции гостиницы «Метрополь» в Москве в 1986-87 гг. фирмой Bauer.
Способ струйной технологии устройства грунтоцементных свай и массивов состоит из нескольких этапов:
I - осуществляют бурение скважин диаметром 40-90 мм на проектную глубину с погружением оборудования.
II - под давлением 100-400 атм и углом 90° к оси сваи осуществляется резка грунта струей воды или суспензией с добавлением воздуха.
В качестве режущего инструмента используют специальные вращающиеся форсунки, что обеспечивает круговое разрушение грунта. По мере резания осуществляется плавный подъем рабочего инструмента. Частота вращения и скорость подъема зависят от вида грунта и его физико-механических характеристик. Вспученный грунт в виде пульпы может частично вымываться на поверхность.
III - одновременно с резкой и размывом грунта осуществляется его смешивание с цементной или цементно-глинистой суспензией на основе бентонитового порошка. В результате интенсивного перемешивания и разрушения грунта образуется однородная грунтоцементная масса плотностью 1,4-1,9 т/м3. В зависимости от расхода цемента и гранулометрии размытого грунта физико-механические характеристики грунтоцемента могут составлять 5-15 МПа.
IV - для получения грунтоцементного массива осуществляют соединение ранее возведенных элементов. Создание массива может осуществляться как до набора проектной прочности, так и после.
Комбинация различных массивов может повторять плановые очертания фундаментов и иметь разнообразную форму.
Технологические схемы производства работ приведены на рис. 6.8. Они раскрывают перечисленные технологические этапы и особенности производства работ. Усиление фундаментов может осуществляться как с наружной, так и подвальной частей зданий.
Рис. 6.8. Технологические этапы струйной технологии (а), схемы образования грунтоцементных массивов (б) и технология усиления основания фундаментов (в) I - бурение скважины; II - разрушение и вспучивание грунта струей воды; III - резка с размывом грунта и смешиванием с цементной суспензией; IV - соединение грунтоцементных массивов; 1 - буровая установка; 2 - компрессор; 3 - насос для воды; 4 - растворонасос; 5 - отстойник для обратной пульпы; 6 - форсунка
В зависимости от технологических режимов производства работ возможно получение различного профиля грунтоцементного основания:
- при вращении форсунки вокруг оси обеспечивается получение цилиндрической поверхности в виде колонны или сваи;
- при перемещении форсунки на угол 180° обеспечивается получение укрепляемой зоны в виде полуцилиндра;
- при использовании двух форсунок и отсутствии вращения создается плоский профиль;
- при последовательной проходке с шагом установки инъекторов, равным зоне действия струйной технологии, обеспечивается получение плоской вертикальной стены;
- создание массива для переопирания фундаментов осуществляется путем комбинации различных форм и режимов движения режущего инструмента.
При устройстве массивов для переопирания фундаментов грунт размывается струей воды под давлением 300-400 атм. Через дополнительную форсунку подается цементная суспензия под давлением до 15 атм. Полученная грунтоцементная смесь после затвердения обладает высокой несущей способностью и повышенной плотностью, обеспечивающей водонепроницаемость.
Струйная технология укрепления фунтов и устройства свай предусматривает использование сжатого воздуха, который смешивается с цементной суспензией, а грунт вспучивается и образуется гомогенный грунтоцементный массив.
Варианты технологических режимов производства работ применяются в зависимости от грунтовых условий и технологических целей (рис. 6.9).
Рис. 6.9. Варианты технологических режимов устройства грунтоцементных свай и массивов I - однокомпонентная; II - двух- и III - трехкомпонентная технологии образования грунтоцемента
Грунтоцементный массив можно выполнять любой формы и в любом участке грунта: на поверхности, под подошвой фундамента, на определенной глубине.
Устройство грунтоцементных свай может производиться в очень стесненных условиях при любой необходимой глубине. Выполнение работ допускает присутствие подземных коммуникаций и не вызывает их повреждения. Струйная технология экологически чиста на всех технологических операциях.
При реконструкции зданий данная технология может использоваться при заглублении подвальной части зданий, усилении фундаментов, устройстве заглубленных сооружений в стесненных условиях городской застройки и других случаях.
В зависимости от грунтовых условий применяются однокомпонентная, двухкомпонентная и трехкомпонентная струйные технологии.
При наличии большого объема органических включений используются специальные приемы предварительной промывки обрабатываемых грунтов или их полное замещение после гидроразмыва и выноса на поверхность цементным раствором с добавлением мраморной пудры. Режим предварительного размыва позволяет повысить соотношение «цемент - грунт» и прочность закрепленных грунтов.
Использование цементно-песчаных растворов для замещения фунта недопустимо из-за высокой абразивности зерен кварца и быстрого износа раствороподающих шлаков высокого давления.
Однокомпонентная струйная технология (рис. 6.10,а). Основана на размыве, перемешивании и закреплении грунта струей цементного раствора с соотношением Основные параметры струйной технологии включают: давление подачи раствора - 35-45 МПа; расход раствора - 50-150 л/мин; скорость подъема монитора - 25-50 см/мин; частота вращения монитора - 10-30 об/мин.
Рис. 6.10. Технологические схемы струйной цементации грунтов а - однокомпонентная; б - двухкомпонентная с воздушной струей; в - двухкомпонентная с водной струей; г - трехкомпонентная; 1 - грунтоцементная свая; 2 - форсунка для подачи цементного раствора; 3 - то же, цементного раствора в воздушном потоке; 4 - форсунка для подачи воды; 5 - то же, для подачи воды и воздуха
Двухкомпонентная струйная цементация (рис. 6.10, б, в) состоит из размыва, перемешивания и закрепления грунтов с помощью двух струй.
Используют воздушную систему, когда струя цементного раствора перемешивается внутри струи сжатого воздуха и за счет этого возрастает энергия разлива.
Водная система состоит из предварительного разлива струей воды и подачи цементного раствора.
Параметры двухкомпонентной струйной цементации включают: давление подачи раствора - 35-45 МПа; расход раствора - 100-180 л/мин; давление подачи воздуха - 0,7-1,7 МПа; расход воздуха - 8-12 м3/мин; скорость подъема монитора - 15-25 см/мин; частота вращения - 7-15 об/мин.
Для двухкомпонентной водной системы: давление подачи раствора - 5-8 МПа; расход раствора - 50-100 л/мин; давление подачи воды - 40-60 МПа; расход воды - 80-120 л/мин; скорость подъема монитора - 4-7 см/мин; частота вращения монитора - 3-10 об/мин.
Трехкомпонентная струйная цементация (рис. 6.10,г) состоит из разлива, перемешивания и закрепления грунтов с помощью трех струй. Струя воды помещается внутрь струи сжатого воздуха и подается через верхнее сопло, что позволяет использовать эффект «эрлифта» для выноса на поверхность легких частиц разливаемого грунта. Струя цементного раствора подается через нижнее сопло и служит для перемешивания разлитых частиц грунта.
Основные параметры трехкомпонентной технологии включают: давление подачи раствора - 5-8 МПа; расход раствора - 50-100 л/мин; давление подачи воды - 40-60 МПа; расход воды - 80-120 л/мин; давление подачи воздуха - 0,7-1,7 МПа; расход воздуха - 8-12 м3/мин; скорость подъема монитора - 4-7 см/мин; частота вращения монитора - 3-10 об/мин.
Струйный размыв грунта основан на движении струи малого диаметра и высокой скорости рабочей среды. Разрушение грунта определяется следующими факторами: кавитациоииым воздействием струи на грунт; действием динамического и ударного воздействия струи; снижением прочности грунтов, вызываемых пульсирующей нагрузкой; размывающим воздействием высокоскоростной водяной струи.
Значительное влияние на эффект размыва оказывают физико-механические и реологические характеристики грунтов. Для насыщенных водой грунтов размыв происходит более интенсивно по сравнению с менее влажным или сухим грунтом. Размыв протекает по схеме интенсивной суффозии при больших градиентах напора.
Сила гидродинамического давления на частицы грунта пропорциональна градиенту давления и объему частицы. Разрушение мелкозернистой породы происходит менее интенсивно, чем крупнозернистой.
Расчетная зависимость для оценки и определения радиуса действия (создания) грунтоцементной полости R может быть определена из соотношения
где К - коэффициент, учитывающий свойства грунта; dg - диаметр струи на выходе из насадки; Reg - число Рейнольдса для растворной струи, оценивающее турбулентность потоков; рg -плотность цементного раствора; Е0 - кинетическая энергия струи; Jгр - размываемость грунта; Vс - скорость струи.
По данным И.И. Бройда, значение некоторых параметров в приведенной зависимости требует экспериментального подтверждения.
Процесс выноса разрушенной структуры грунта (рис. 6.11) определяется плотностью и вязкостью транспортирующей жидкости (цементного раствора), диаметром рабочей скважины, сечением затрубного пространства и др. параметрами. При разработке тонкодисперсных грунтов образуется пульпа, обладающая высокой вязкостью, что в ряде случаев приводит к кратковременной закупорке скважины («клапану»). В результате размыв прекращается и происходит инъекция раствора в окружающий грунт с гидравлическим разрывом структуры и последующим выталкиванием «пробки» из скважины (фонтанированием раствора).
Рис. 6.11. Схема формирования грунтоцементной сваи по однокомпонентной технологии 1 - поступление цементного раствора; 2 - форсунка; 3 - выход пульпы (грунтоцементной смеси) через затрубное пространство; 4 - водоцементная струя; 5 - обрабатываемый объем грунта; 6 -грунтоцементный массив предыдущих циклов; h - высота грунтоцементного слоя за одну проходку; D - диаметр сваи
В ряде случаев, вследствие временного повышения давления в размываемой полости, происходит подъем поверхности грунта, что является недопустимым явлением.
При двух- и трехкомпонентной технологиях возможность закупорки скважины практически отсутствует из-за образования пульпы с низкой вязкостью, а также в результате ее воздухо-насыщения. Изливающаяся пульпа сбрасывается по открытым каналам в пульпоприемник. Частичное вовлечение цементного раствора после обезвоживания пульпы позволяет получать слабосцементированный грунт, который может использоваться при устройстве земляных сооружений.
По данным А.Г. Малинина, в зависимости от используемых технологий, продолжительности цикла обработки грунта расход цемента аппроксимируется рядом кривых, представленных на рис. 6.12.
Рис. 6.12. Содержание цемента в объеме грунтоцементной сваи в зависимости от продолжительности цикла обработки грунта 1 - расход цемента в составе струи цементного раствора; 2 - фактическое содержание цемента в теле сваи; 3 - потери цемента в виде пульпы
Увеличение времени инъекции способствует увеличению потерь цемента в виде пульпы с незначительным повышением его содержания в грунтовой массе. Для каждого вида грунтов существует оптимальный режим инъекции, обеспечивающий получение высоких физико-механических характеристик грунтоцемента.
Соотношение между прочностью грунтоцемента и расходом вяжущего зависит от характеристик грунтов и составляет от 150 до 500 кг/м3 при прочности на сжатие 5-20 МПа.
Минимальный расход цемента при более высокой прочности обеспечивается для песчаных и гравелистых фунтов, а максимальный - для глинистых фунтов. Ориентировочные данные по прочности грунтоцементных образований для различных категорий фунтов представлены в таблице 6.6.
Таблица 6.6
- Реконструкция жилых зданий Часть I Технологии восстановления эксплуатационной надежности жилых зданий
- Содержание
- Предисловие
- Введение
- Глава 1 объемно-планировочные и конструктивные решения реконструируемых жилых зданий
- § 1.1. Роль реконструкции зданий в решении социально-экономических и градостроительных задач
- Жилищный фонд Российской Федерации, размещенный в 4-, 5-этажных домах первых массовых серий
- § 1.2. Градостроительные аспекты реконструкции жилой застройки
- § 1.3. Характеристика жилищного фонда старой постройки
- Классификация основных схем планировочной компоновки жилых капитальных зданий старой постройки
- Конструктивные схемы капитальных жилых зданий старой постройки
- § 1.4. Объемно-планировочные и конструктивные решения домов первых массовых серий
- Общая площадь квартир (м2) по нормам проектирования
- § 1.5. Жизненный цикл зданий
- § 1.6. Моделирование процесса физического износа зданий
- § 1.7. Условия продления жизненного цикла зданий
- § 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
- Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
- § 2.1. Общие положения
- Классификация повреждений конструктивных элементов зданий
- § 2.2. Физический и моральный износ зданий
- Оценка степени физического износа по материалам визуального и инструментального обследования
- § 2.3. Методы обследования состояния зданий и конструкций
- § 2.4. Инструментальные средства контроля технического состояния зданий
- Характеристики тепловизоров
- § 2.5. Определение деформаций зданий
- Значение предельно допустимых прогибов
- § 2.6. Дефектоскопия конструкций
- Повреждения и дефекты фундаментов и грунтов основания
- Число точек зондирования для различных зданий
- Значения коэффициента к снижения несущей способности кладки в зависимости от характера повреждений
- § 2.7. Дефекты крупнопанельных зданий
- Классификация дефектов панельных зданий первых массовых серий
- Допустимая глубина разрушения бетона за 50 лет эксплуатации
- § 2.8. Статистические методы оценки состояния конструктивных элементов зданий
- Значение показателя достоверности
- Глава 3 методы реконструкции жилых зданий
- § 3.1. Общие принципы реконструкции жилых зданий
- Методы реконструкции зданий
- § 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
- § 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
- § 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
- § 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
- Уровень реконструктивных работ жилых зданий первых типовых серий
- Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
- § 4.1. Физическая модель надежности реконструируемых зданий
- § 4.2. Основные понятия теории надежности
- § 4.3. Основная математическая модель для изучения надежности зданий
- § 4.4. Методы оценки надежности зданий с помощью математических моделей
- § 4.5. Асимптотические методы в оценке надежности сложных систем
- § 4.6. Оценка среднего времени до возникновения отказа
- § 4.7. Иерархические модели надежности
- Методики оценки функции надежности p(t) реконструированных зданий
- § 4.8. Пример оценки надежности реконструируемого здания
- Глава 5 основные положения технологии и организации реконструкции зданий
- § 5.1. Общая часть
- § 5.2. Технологические режимы
- § 5.3. Параметры технологических процессов при реконструкции зданий
- § 5.4. Подготовительные работы
- § 5.5. Механизация строительных процессов
- § 5.6. Технологическое проектирование
- § 5.7. Проектирование технологических процессов реконструкции зданий
- § 5.8. Календарные планы и сетевые графики
- § 5.9. Организационно-технологическая надежность строительного производства
- Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
- Расчетное сопротивление грунтов по нормам 1932 - 1983 гг.
- § 6.1. Технологии укрепления оснований
- § 6.1.1. Силикатизация грунтов
- Радиусы закрепления грунтов в зависимости от коэффициента фильтрации
- Технология и организация производства работ
- Механизмы, оборудование и приспособления для проведения инъекционных работ
- Значения коэффициента насыщения грунта раствором
- § 6.1.2. Закрепление грунтов цементацией
- § 6.1.3. Электрохимическое закрепление грунтов
- § 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
- § 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
- Прочность грунтоцементных образований
- § 6.2. Технологии восстановления и усиления фундаментов
- § 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
- § 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
- § 6.2.3. Усиление фундаментов сваями
- § 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
- § 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
- Производство работ
- § 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
- § 6.3. Усиление фундаментов с устройством монолитных плит
- § 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
- § 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
- § 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
- § 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
- § 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
- § 6.5. Технология усиления кирпичных стен, столбов, простенков
- § 6.6. Технология усиления железобетонных колонн, балок и перекрытий
- Усиление конструкций композитными материалами из углеродных волокон
- Глава 7 индустриальные технологии замены перекрытий
- § 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
- График производства работ при устройстве монолитного перекрытия по профнастилу
- § 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
- § 7.3. Технология замены перекрытий из крупноразмерных плит
- § 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
- § 7.5. Технология возведения монолитных перекрытий
- § 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
- Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий
- Область эффективного применения различных конструктивных схем перекрытий
- График производства работ по устройству сборно-монолитных перекрытий
- Глава 8 повышение эксплуатационной надежности реконструируемых зданий
- § 8.1. Эксплуатационные характеристики ограждающих конструкций
- § 8.2. Повышение энергоэффективности ограждающих конструкций
- § 8.3. Характеристики теплоизоляционных материалов
- § 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
- § 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
- Физико-механические характеристики облицовочных плит
- § 8.6. Технологии устройства вентилируемых фасадов
- Характеристика средств подмащивания
- График производства работ по теплозащите стен пятиэтажного 80-квартирного жилого дома серии 1-464
- § 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
- § 8.8. Управляемые технологии энергопотребления жилых зданий
- Список литературы