logo search
матвед ответы к экзамену

63. Теплоизоляционные материалы и изделия: классификация, виды и свойства

К теплоизоляционным материалам относятся строительные материалы и изделия, предназначенные для тепловой изоляции ограждающих конструкций зданий и сооружений, технологического оборудования и трубопроводов. Такие материалы имеют низкую теплопроводность (при температуре 25°С коэффициент теплопроводности не более 0,175 Вт/(м°С)) и плотность (не выше 500кг/м?).

Основная техническая характеристика теплоизоляционных материалов - это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м? при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(мК) или Вт/(м°C). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала.

Кроме этого, важными дополнительными свойствами теплоизоляционных материалов являются - прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.

Классифицируем теплоизоляционные материалы

Теплоизоляционные материалы и изделия можно систематизировать по основным признакам:

По виду исходного сырья: неорганические (минеральная и стеклянная вата, ячеистые бетоны, материалы на основе асбеста, керамические и др.) и органические (древесно-волокнистые плиты, пенно- и поропласты, торфяные плиты и пр.). Также изготавливаются комбинированные материалы, с использование органических и неорганических компонентов.

По структуре: волокнистые (минеральная , стеклянная вата, шерсть и пр.), ячеистые (ячеистые бетоны и полимеры, пенно- и газокерамика и пр .) и зернистые или сыпучи (керамический и шлаковый гравий, пемзовый и шлаковый песок и пр.

По форме: рыхлые (вата, перлит и др.), плоские (плиты, маты, войлок и др.), фасонные (цилиндры, полуцелиндры, сегменты и др.), шнуровые (шнуры из неорганических волокон: асбестовые, минерального и стеклянного волокна).

По возгораемости (горючести): несгораемые (керамзит, ячеистые бетоны и др.), трудносгораемые (цементно-стружечные, ксилолит) и сгораемые (ячеистые пластмассы, торфоплиты, камышит и пр.)

По содержанию связующего вещества: содержащие связующее вещество (ячеистые бетоны, фибролит и пр.) и не содержащие связующее вещество (стекловата, минеральное волокно).

Строительные и теплофизические свойства

Маркировку теплоизоляционных материалов связывают с их плотностью. Поэтому основным показателем качества таких материалов является их марка плотности: D15-35-50-100-125-150-175-200-250-300-350-400-500-600.

Пористые теплоизоляционные материалы

Пористые материалы получили наибольшее распространение в строительстве. Считается, что чем больше объем пор, тем теплопроводность меньше, это связано с тем, что самой малой теплопроводностью обладает воздух (0,023Вт/м°С). Но теплопроводность зависит не только от объема, но и от размеров пор, их формы, а также характера пористости и пр. В крупных порах конвективный теплоперенос происходит интенсивнее по сравнению с мелкими, в которых воздух при наличии теплового градиента может оказаться неподвижным и теплопроводность его минимальная. Поэтому при формировании пористой структуры технологические приемы всегда направлены на получение, по возможности, более мелких, равномерно расположенных пор по всему объему материала.

Характер пористости оказывает решающее влияние на акустические и теплоизоляционные свойства пористого материала. При замкнутой пористости материал относится к теплоизоляционным, а при сквозной (в определенных пределах) – к звукопоглощающим. Такие свойства могут быть улучшены также путем специальной обработки поверхностей изделий и образования отверстий в теле материала.

Волокнистые теплоизоляционные материалы

Волокнистое строение характерно для материалов на основе минерального (минеральная и стеклянная вата) или органического волокна (древесное, полимерное, животное). Минеральные волокна получают путем расплавления неорганического сырья с последующим превращением расплава (путем распыления, вытягивания через фильеры или другими способами) в волокна, а органическое – путем расщепления древесины или другого растительного сырья на волокна до минимально возможного диаметра. Выполнение такой операции осуществляется на достаточно сложном оборудовании и обычно связано с большой затратой энергии.

Теплоперенос в волокнистых материалах осуществляется за счет переноса тепла от одного волокна к другому (кондукционный - передача тепла от одного объекта другому при прямом контакте), а также конвективным переносом воздуха, заключенным между волокнами. Поэтому с уменьшением толщины волокон теплоперенос затрудняется, так как при передаче тепла от одного волокна к другому затрачивается тепловая энергия: чем тоньше волокно, тем больше таких контактов, тем больше потери тепла при его переносе по направлению теплового градиента. При тонковолокнистой структуре воздух находится в виде тонких прослоек неправильной формы, что также затрудняет теплоперенос в такой структуре за счет конвективного теплопереноса.

Оптимальной считается структура по возможности с более тонкими волокнами. Для неорганических материалов обычно размер волокон ограничивается величиной 5-8мк, так как при меньшем диаметре волокно получается ломким. Для органических материалов диаметр волокон зависит от природы исходного материала и в ряде случаев может быть значительно меньше. Теплопроводность волокнистых материалов зависит также от направления потока теплоты. Например, для дерева теплопроводность вдоль волокон примерно в 2 выше, чем поперек.

Увлажнение и тем более замерзание воды в порах материала ведет к резкому увеличению теплопроводности, поскольку у воды она равна 0,58 Вт/м°С, т.е. примерно в 25 раз больше, чем у воздуха; а теплопроводность льда равна 2,32 Вт/м°С, в 100 раз больше, чем у воздуха.

Свойства теплоизоляционных материалов

Температуростойкость оценивают предельной температурой применения материала. Выше этой температуры материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загораться. Предельную температуру применения устанавливают несколько ниже значения температуростойкости в целях предосторожности, и указывают в технической характеристике материала.

Теплоемкость имеет существенное значение в условиях частых теплосмен, так как в этих условиях необходимо учитывать теплоту, поглощаемую (аккумулированную) теплоизоляционным слоем. Теплоемкость неорганических материалов колеблется от 0,67 до 1 кДж/кг°С. С увеличением влажности материала его теплоемкость резко возрастает, т.к. для воды при 4°С она составляет 4,2 кдж/кг°С. Увеличение теплоемкости отмечается и при повышении температуры.

Огнестойкость характеризует сгораемость материала, т.е. его способность воспламеняться и гореть при воздействии открытого пламени. Сгораемые материалы можно применить только при осуществлении мероприятий по защите от возгорания и возможности использования средств пожаротушения. Возгораемость определяется при воздействии температуры 800-850°С и выдержке в течение 20 мин.

Физико-механические свойства

Плотность для жестких материалов – отношение массы сухого материала к его объему, а плотность волокнистого – это отношение массы сухого материала к его объему, но определенному при заданной нагрузке.

Прочность при сжатии определяется при 10% деформации. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Это величина напряжения, вызывающего изменение толщины изделия на 10%.

Прочность теплоизоляционных материалов вследствие их пористого строения относительно невелика. Предел прочности при сжатии обычно колеблется от 0,2 до 2,5 МПа. Материалы, у которых прочность выше 0,5 МПа, называют теплоизоляционно-конструктивными и используют для несущих ограждающих конструкций. Для некоторых видов теплоизоляционных материалов основной характеристикой является предел прочности при изгибе (плиты, скорлупы, сегменты) или при растяжении (маты, войлок, асбестовый картон и пр.) Во всех случаях требуется, чтобы прочность теплоизоляционного материала была достаточной для его транспортирования, сохранности, монтажа и работы в конкретных эксплутационных условиях.

Сжимаемость – способность материала изменять толщину под действием заданного давления. Материалы по сжимаемости мягкие М: деформация свыше 30%. Полужесткие ПЖ – деформация 6-30%, жесткие – деформация не более 6%. Сжимаемость характеризуется относительной деформацией материала при сжатии под действием удельной 0,002 МПа нагрузки.

Водопоглощение значительно ухудшает теплоизоляционные свойства и понижает прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, имеют низкое водопоглощение (менее 1%). Для уменьшения водопоглощения, например, при изготовлении минераловатных изделий зачастую вводят гидрофобные добавки, которые позволяют уменьшить сорбционную влажность в процессе эксплуатации.

Газо- и паропроницаемость учитывают при применении теплоизоляционного материала в ограждающих конструкциях. Теплоизоляция не должна препятствовать воздухообмену жилых помещений с окружающей средой через наружные стены зданий. В случае повышенной влажности производственных помещений теплоизоляцию защищают от увлажнения с помощью надежной гидроизоляции, укладываемой с «теплой» стороны.

Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия или обрабатывая их антисептиками. Высокопористое строение теплоизоляционных материалов способствует прониканию в них жидкостей, газов и паров, находящихся в окружающей среде. Взаимодействие их с материалом может вызвать его разрушение. Органические материалы или материалы, содержащие в своем составе органические компоненты (связующие вещества, крахмал, клей и пр.) или волокнистые наполнители (древесное волокно), должны обладать биологической стойкостью. При увлажнении таких материалов возникает опасность разрушения их грибками или микроорганизмами. Поэтому при использовании теплоизоляционных материалов в местах, которые подвержены увлажнению, в процессе эксплуатации необходимо обрабатывать их антисептиками.

При использовании теплоизоляционных материалов в ограждающих конструкциях они могут подвергаться воздействию попеременного замораживания и оттаивания, что может привести к их разрушению, и потере в связи с этим , теплозащитных свойств. Главным условием обеспечения работоспособность таких конструкций является защита теплоизоляционного материала от увлажнения, которая может произойти за счет миграции влаги (от «теплого» к «холодному») и конденсации водяных паров, которая наиболее интенсивно происходит в холодное время года.

64. особенности технологии бетона для сооружения железнодорожного транспорта, возводимы в зимнее время и в суровых климатических условиях

65. глиноземистый цемент: получение, свойства и применение

Глиноземистый цемент получается методом тонкого измельчения обожженной до спекания или сплавления богатой глиноземом сырьевой смеси.

Для сырья используется известняк, известь или породы, с высоким содержанием глинозема.

Для интенсификации процесса помола клинкера допускается введение технологических добавок до 2%, которые не ухудшают качество цемента и снижают его стоимость.

Существует несколько способов получения глиноземистого цемента.

Один из способов - такой же, как при изготовлении портландцемента: тонкоизмельченную смесь бокситов и известняка обжигают до спекания во вращающихся печах при 1200- 1300°, готовый клинкер пропускают через мельницу.

При другом способе смесь бокситов и известняка расплавляют при температуре 1400-1450° в электрических печах или вагранках.

Расплав охлаждают, после чего полученный материал подвергают дроблению и затем размалыванию в трубных мельницах.

Возможно изготовлять глиноземистый цемент плавкой в доменной печи бокситовой железной руды с известняком и металлическим ломом.

Цементом является получаемый в результате плавки шлак, после того как он пройдет дробление и размол.Глиноземистый цемент - одним из самых огнестойких цементов, он выдерживает температуру до 1700C°.

Преимуществами глиноземистого цемента являются затвердевания во влажной среде, при добавлении цемента в бетон, он стает водонепроницаемым, морозостойким.

К особым свойствам глиноземистого цемента относятся: быстрое нарастание прочности в раннем возрасте.

За 28 суток твердения глиноземистый цемент выделяет тепло в количестве 70 кал/г. Характерна высокая скорость тепловыделения, что позволяет использовать бетон при отрицательных температурах воздуха (до -10°С).

Кроме того, глиноземистый цемент имеет повышенную плотность, что делает бетон на его основе более устойчивым к вредным воздействиям агрессивных жидкостей и газов;

Также глиноземистый цемент по сравнению с портландцементом более огнестоек и термически устойчив; в смеси с шамотом, магнезитом и др. глиноземистый цемент используется для получения гидравлически твердеющих огнеупорных растворов и бетонов.

При возведении массивных сооружений, с применением глиноземистого цемента, внутри бетонного массива развиваются высокие температуры, достигающие 70 °С и выше.

При таких температурах твердение протекает ненормально и прочность бетона внутри конструкций получается значительно ниже, чем в наружных слоях.

Бетоны и растворы на глиноземистом расширяющемся цементе могут твердеть на воздухе и в воде и характеризуются:

• безусадочными при твердении в воде;

• усадочными менее в 1,5-2 раза, чем на глиноземистом цементе в условиях твердения на воздухе;

• достаточно стабильны и долговечны;

• могут подвергаться пропарке, но их не следует применять при температурах, превышающих 90-100° С;

• в суточном возрасте имеют 43%, а в трех суточном — 85% 28-суточной прочности;

• обладают высокой атмосферной устойчивостью, морозостойкостью, сульфатостойкостью;

Применение глиноземистого цемента.

Применение глиноземистого цемента ограничено его высокой стоимостью, но, даже не смотря на это, глиноземистые цементы находят широкое применение в различных областях.

Основными потребителями глиноземистого цемента являются предприятия топливно-энергетического комплекса, черной и цветной металлургии, строительных комплексов оборонного значения.

Рекомендуется глиноземистый цемент применять для изготовления сборных железобетонных конструкций специального назначения на заводах и строительных площадках.

Здесь данный цемент имеет то преимущество, что изделия могут выпускаться с завода уже через сутки после изготовления, а распалубка их может производиться через 12-16 часов.

Причем отпадает необходимость в тепловлажностной обработке, что обычно требуется при применении портландцемента.

Глиноземистый цемент применяется для изготовления железобетонных сооружений, подвергающихся воздействию морских, сульфатных и других минерализованных вод (не допускается применение данного цемента в кислой и щелочной средах).

Глиноземистый цемент применяется и для изготовления гидроизоляционных штукатурок:

1. В метростроении обеспечивает водонепроницаемость тоннелей метро, позволяет производить зачеканку швов между тюбингами, омоноличивание и усиление старых конструкций.

2. В промышленном и гражданском строительстве применяется при сооружении емкостей для хранения жидкого топлива и других аналогичных целей, для зачеканки швов водопроводных линий при рабочем давлении до 10 атм.

3. В коммунальном хозяйстве для гидроизоляционных покрытий очистных сооружений, при замоноличивании стыков различных трубопроводов, для ликвидации аварий, связанных с утечкой различных жидкостей, сооружения бассейнов, при ремонте душевых и других сооружений.

Глиноземистый цемент также применяется для тампонирования холодных нефтяных скважин, тампонирования трещин в породах при большом дебите воды; для заделки пробоин в судах морского транспорта; для быстрого устройства фундаментов под машины, заливки анкерных болтов, восстановления поврежденных зданий и мостов; для изготовления сборных железобетонных изделий на заводах ЖБИ и строительных площадках; для изготовления емкостей и других сооружений; для изготовления огнеупорных бетонов и штучных изделий с огнеупорностью до 1700 °C.

Глиноземистый цемент по выгодным ценам Вы всегда можете приобрести в нашей Компании.

Так же мы рады предложить Вам большой выбор огнеупорных и строительных материалов.

На нашем сайте Вы можете не только выбрать необходимую Вам продукцию, но и сделать заказ, который будет оперативно принят нашими сотрудниками.

Вас приятно удивят не только ассортимент и качество нашей продукции, но и цены.

Мы будем рады встрече с Вами и установлению длительного сотрудничества.