logo search
Анализ напряженного состояния стержневых конструкций в программе APM Structure3d

1.2 Основные сведения о методе конечных элементов

При разработке любой конструкции перед проектировщиком стоит задача оценки ее напряженно-деформированного состояния. Для этого нужно знать распределение напряжений в элементах проектируемой конструкции, а также величины перемещений отдельных ее точек как при статическом характере внешнего нагружения, так и в условиях действия нагрузок, изменяющихся во времени.

При традиционном подходе для решения такой задачи в общем случае необходимо решить уравнения, обеспечивающие выполнение условий равновесия и совместности деформаций. Возникающая в связи с этим проблема заключается в том, что в случае сложной двумерной или трехмерной конструкции поведение системы описывается уравнениями с большим количеством неизвестных. Одним из способов устранения этой трудности является использование приближенных методов решения.

В настоящее время, в связи с активным внедрением в инженерную практику вычислительной техники, наиболее эффективным приближенным методом решения прикладных задач механики является метод конечных элементов (МКЭ) [1-3].

Ключевая идея МКЭ заключается в следующем; сплошная среда (модель конструкции) заменяется дискретной путем разбиения ее на области -- конечные элементы. В каждой области поведение среды описывается с помощью отдельного набора функций, представляющих собой напряжения и перемещения в этой области. Конечные элементы соединяются узлами. Взаимодействие конечных элементов друг с другом осуществляется только через узлы. Расположенные определенным образом, в зависимости от конструкции объекта, и закреплённые в соответствии с граничными условиями, конечные элементы позволяют адекватно описать все многообразие моделей конструкций и деталей.

К конечному элементу могут быть приложены внешние нагрузки (сосредоточенные и распределенные силы и моменты), которые приводятся к узлам данного элемента и носят название узловых нагрузок.

При расчетах методом конечных элементов вначале определяются перемещения узлов модели. Величины внутренних усилий в элементе пропорциональны перемещениям в узлах элемента. Коэффициентом пропорциональности выступает квадратная матрица жесткости элемента, количество строк которой равно числу степеней свободы элемента (в общем случае это есть произведение числа степеней свободы в узле на число узлов элемента). Все остальные параметры конечного элемента, такие как внутренние усилия, напряжения, поле перемещений и т. п., вычисляются на основе его узловых перемещений.

Основными типами применяемых на практике конечных элементов являются:

* стержневые;

* пластинчатые;

* объемные;

* специальные (типа совместных перемещений или упругих связей). Далее более подробно рассмотрено использование различных типов конечных элементов в модуле АРМ Structure3D.