9. Микроразрушение бетона. Как оценка этого параметра связана с оценкой прочности ж/б элементов при циклическом нагружении.
При действии многократно повторных нагрузок с повторяемостью в несколько миллионов циклов временное сопротивление бетона сжатию под влиянием развития структурных микротрещин уменьшается. Предел прочности бетона при многократно повторяемых нагрузках или предел выносливости бетона Rr, согласно опытным данным зависят от числа циклов нагрузки – разгрузки и отношения попеременно возникающих минимальных и максимальных напряжений или ассиметрии цикла ρ=σmin/ σmах. С увеличением числа циклов n снижается Rr/ Rb; напряжение на горизонтальном участке кривой при n→∞ называют абсолютным пределом выносливости. Практический предел выносливости Rr (на ограниченной базе n=2*106) зависит от характерности цикла ρ почти линейно, его наименьшее значение Rr = 0.5 Rb.
Наименьшее значение предела выносливости связано с началом образования структурных микротрещин как Rr ≥ Rcrc. Такая связь позволяет находить предел выносливости по первичному нагружению образца, опрделяя границы образования структурных микротрещин ультразвуковой аппаратурой.
Значение Rr необходимо для расчета на выносливость железобетонных конструкций, испытывающих динамические нагрузки, — подкрановых балок, перекрытий некоторых промышленных зданий и т. п.
Разрушение бетона происходит постепенно. Вначале возникают перенапряжения, а затем микротрещины в отдельных микрообъемах. Развитие этого процесса сопровождается перераспределением напряжений и вовлечением в трещинообразоваиие все большего объема материала, вплоть до образования сплошного разрыва того или иного вида, зависящего от формы образца или конструкций, ее размеров и других факторов На последней стадии иагружения процесс микроразрушепий становится неустойчивым и носит лавинный характер.
Разрушение бетона при сжатии обусловлено развитием микротрещин отрыва, направленным параллельно действующему усилию. Происходит кажущееся увеличение объема образца, но в действительности нарушается сплошность материала. Процесс развития микротрещин определяется структурой бетона, в частности размером и числом дефектных мест в ней, а также видом и режимом приложенной нагрузки.
- 1. Основы безопасности конструкций. Понятие о методах вероятностной оценки безопасности зданий посредством оценки однородности прочности бетона при проектировании и изготовлении конструкций и зданий.
- 3. Усадка бетона. От чего зависит? Физическая основа. Начальный модуль упругости. Местное смятие бетона.
- 4. Прочность бетона. Зависимость от возраста, скорости нагружения, условий твердения, масштабного фактора. Призменная прочность.
- 5. Классы, марки бетона. Принцип взаимосвязи. Расчетное сопротивление бетона. Деформативность бетона. Начальный модуль упругости бетона.
- 6. Ползучесть бетона. Ее влияние на напряжение в бетоне и арматуре. Влияние ползучести на предварительное напряжение растянутой арматуры.
- 7. Мягкая и твердая арматурная сталь. Текучесть стали. Условный предел текучести. Принципиальные отличия горячекатаной арматуры от высокопрочной.
- 8. Чем определяется расчетное и нормативное сопротивление арматуры растяжению?
- 9. Микроразрушение бетона. Как оценка этого параметра связана с оценкой прочности ж/б элементов при циклическом нагружении.
- 10. От чего зависит сцепление арматуры с бетоном? Чем характеризуется сцепление? Принципы эскизного конструирования анкеровки стали а-III: растянутой, сжатой, соответствующих стыков.
- 11. Какая польза от преднапряжения железобетона? Влияет ли преднапряжение на прочность конструкции?
- 12. Почему в качестве напрягаемой арматуры не применяют мягкую сталь? Почему в обычных конструкциях не применяют твердую сталь?
- 13. Чем ограничивается величина преднапряжений в арматуре? с какой целью потери напряжений разделяют на первые и вторые? Зависят ли потери напряжений от способа натяжения?
- 14. Три стадии напряженного деформированного состояния железобетонных элементов без предварительного напряжения.
- 15. Метод расчета по предельным состояниям. Сущность 1-го и 2-го предельных состояний. Решаемые задачи.
- 16. Классификация нагрузок. Расчетные и нормативные нагрузки. Степень ответственности зданий и сооружений.
- 17. Причины армирования балок и колонн. Особенности работы изгибаемых ж/б элементов перекрывающих один пролет и неразрезных балок, перекрывающих несколько пролетов.
- 18. Предельная высота сжатой зоны бетона. Основные понятия. Использование для оптимального проектирования. Относительная предельная высота сжатой зоны бетона.
- 19. Как меняется деформирование изгибаемых элементов при шарнирном или защемленном (жестком) закреплении концов изгибаемого ж/б элемента? Меняется ли при этом прочность элемента?
- 21. Основные схемы, используемые при анализе возможных причин разрушении ж/б элементов по наклонному сечению. Почему расчетное сопротивление поперечной и отогнутой арматуры меньше, чем продольной?
- 22. Сжатые элементы с большим эксцентриситетом и малым эксцентриситетом (принципиальные отличия). Случайный эксцентриситет.
- 24. Усилие концевых участков сжатых элементов – причины внимания к этому фактору. Особенности работы элемента без подобного усиления концевых участков.
- 26. Растянутые элементы. В каких конструкциях, выполненных из ж/б, наиболее ярко проявляется необходимость расчета на растяжение.
- 28. От каких факторов зависит кривизна? Понятие – кривизна и прогиб конструкции. Как эти понятия взаимосвязаны друг с другом?
- 29. Категории трещиностойкости. Какие факторы влияют на образование трещин в ж/б конструкциях?