logo search
конспект лекций по ТВ

4.7. Полиметилметакрилат, полиформальдегид и пентапласт. Сырьё для производства, свойства, применение

Полиметилметакрилат представляет собой прозрачную бесцветную смолу, получаемую полимеризацией метилметакрилата — метилового эфира метакриловой кислоты. Наибольшее распространение получил блочный метод полимеризации метилметакрилата для получения листового материала, широко используемого под названием «органическое стекло» (плексиглас). Органические стекла обладают высокой прозрачностью и диэлектрическими свойствами, легкостью, механической прочностью и применяются для остекления самолетов и автомобилей, изготовления оптических стекол, стоп-сигналов, подфарников, шкал, светильников, часовых стекол, автомобильных фар, предохранительных щитков на машинах и станках. Органические стекла пропускают около 75% ультрафиолетовых лучей (обычное силикатное стекло — менее 1%), что позволяет использовать их для оснащения больничных помещений в оздоровительных целях, так как ульт­рафиолетовые лучи убивают болезнетворных микробов. Они исключительно стойки против атмосферного старения, могут окрашиваться, что придает изделиям кра­сивый внешний вид. Как диэлектрик органическое стекло используется для получения изделий, сочетающих электрическую стойкость с химической стойкостью и износостойкостью. В машиностроении органическое стекло применяется в качестве конструкционного материала. Оно выпускается прозрачным и непрозрачным, бесцветным и крашеным.

Полиметилметакрилат обладает высокой маслостойкостью, водостойкостью, бензостойкостью, устойчив к действию растворов кислот, щелочей и различных солей. В химическом машиностроении из органического стекла изготавливают бачки, сосуды, кислотоупорные трубы и другие изделия. В электротехнике полиметилметакрилаты используются в качестве дугогасящих материалов при электрической сварке, так как при разложении в дуге выделяют большое количество газов. Органическое стекло широко используется для производства изделий народного потребления. Недостатками органического стекла являются низкая твердость, тепло- и износостойкость, склонность к помутнению, а также растрескиванию под действием различных факторов. Основными методами переработки органического стекла в изделия являются штамповка, прессовка, вакуум-формование, сварка отдельных деталей, а также другие способы обработки, характерные для термопластов.

Полиформальдегид (—СН2—О—) — продукт полимеризации формальдегида — представляет собой белый непрозрачный материал с высокими механиче­скими и диэлектрическими свойствами, относительной тепло- и химической стойкостью, жесткостью и ударо­прочностью. Обладает низким коэффициентом трения. Плотность полиформальдегида 1,4 г/см3, прочность при растяжении (при 20°С) 70 МПа и относительное удлинение при разрыве 16—75%. Применяется в машиностроении для изготовления втулок, подшипников, шестерен, труб, листов и других изделий, которые успешно заменяют детали из цветных металлов и их сплавов. Полиформальдегид перерабатывается в изделия экструзией, литьем под давлением и другими методами, характерными для термопластов.

Пентапласт — твердый полимер, получаемый из пентаэритрита, обладает абсолютной водо-, тепло- и высокой химической стойкостью. Плотность пентапласта 1,4 г/см3, прочность при растяжении (при 20°С) 42 МПа и относительное удлинение при разрыве 35%. Из него изготавливают детали химического и холодильного оборудования, работающие длительное время при повы­шенных или пониженных температурах в агрессивных средах. Пентапласт перерабатывают всеми методами, характерными для переработки термопластов.

  1. Виды реактопластов. Их назначение, товарные свойства и принципы маркировки

Наиболее распространенными видами реактопластов являются фенопласты, получаемые на основе фенолоформальдегидных смол, и аминопласты, вырабатываемые из мочевино- и меламиноформальдегид- ных смол. К термореактивным пластмассам относятся также матёриалы на основе полиэфирных, эпоксидных, кремнийорганических и других смол, получаемые исключительно реакцией поликонденсации.

Термореактивные пластмассы при нагревании не расплавляются, а разрушаются и обугливаются, необратимо теряя способность к повторному формованию. Однако реактопласты по сравнению с термопластами обладают повышенной теплостойкостью и более высокими механическими свойствами, что объясняется образованием в них при тепловой обработке сетчатой структуры макромолекул с высокой плотностью поперечных связей. Недостатком термореактивных полимеров является возникновение при затвердевании значительных усадок, структурной неоднородности и внутренних напряжений, приводящих к растрескиванию и деформации получаемых изделий.

Наименьшей усадкой обладают эпоксидные полимеры (0,5—2%), наибольшей — полиэфиры (около 10%). Поэтому при формовании термореактивных смол в их состав вводят специальные наполнители, снижающие усадку и растрескивание, а также себестоимость получаемых изделий. Многие термореактивные полимеры при отверждении выделяют низкомолекулярные вещества, образующие в пластмассах поры. Для устранения этого недостатка и получения плотной структуры материала подготавливаемые смеси подвергают горячему прессованию, при котором происходит связывание наполнителя и полимера и образование монолитного изделия. При последующем нагреве изделия из реактопластов не размягчаются.