logo
Анализ прочности магистральных и технологических трубопроводов при динамическом нагружении

1.1 Параметрические колебания

Повышение ресурса трубопроводов в значительной степени связано с устранением вредных колебаний, приводящих к нарушению изоляционных покрытий, коррозионному растрескиванию, усталостному разрушению тела труб. В неблагоприятных случаях возможно катастрофическое разрушение трубопровода.

Спектр колебаний трубопровода представляет собой сложный комплекс взаимодействия свободных, вынужденных, параметрических, автоколебательных процессов. Спектр собственных частот трубопровода также разнообразен. Он зависит от параметров системы, условий закрепления концов, величин сил сопротивления перемещению, возникающих продольных сил, скорости и объемов движения жидкости, ее пульсации, упругих свойств грунта. Поэтому высока вероятность резонансных явлений при совпадении вынужденных и собственных частот при основном силовом резонансе или возникновения параметрических резонансов.

Остановимся подробнее на параметрических колебаниях. Сходные по внешним проявлениям с вынужденными колебаниями параметрические колебания могут классифицироваться как обычные резонансные. Но между тем, эти колебания принципиально отличаются от вынужденных. Параметрические колебания поддерживаются за счет изменения параметров системы. При определенных сочетаниях между частотой возмущающей силы и собственными частотами системы малое начальное возмущение приводит к развитию колебаний большой амплитуды. Соотношение частот, при котором наступает параметрический резонанс, отличается от соотношения частот при вынужденных колебаниях.

Обычный резонанс - это возрастающие вынужденные колебания устойчивой системы, возникающие под действием возмущающей силы. Он проявляется только тогда, когда частота возмущающей силы равняется частоте собственных колебаний системы.

Параметрический резонанс представляет собой возрастающие колебания около неустойчивого положения равновесия, т.е. параметрический резонанс связан с неустойчивостью равновесного состояния системы, при котором любое случайное возмущение приводит к её раскачке. Так, например, главный параметрический резонанс может быть реализован при амплитуде продольной силы составляющей менее одного процента от эйлерового значения.

Для параметрического резонанса характерно наличие сплошных областей возбуждения (областей динамической неустойчивости).

При обычном резонансе амплитуда колебаний возрастает по линейному, а при параметрическом - по экспоненциальному закону. В этом случае параметрический резонанс считается более опасным.

Параметрические колебания характеризуются еще одной особенностью. Если при обычном резонансе введение трения пропорционально скорости приводит к ограничению амплитуды колебаний, то параметрический резонанс может развиваться и при наличии трения. Вне области неустойчивости установившиеся колебания происходят с частотой внешней нагрузки.

Специфика трубопроводов для перекачки нефтепродуктов заключается в их большой протяженности, разнообразных условиях эксплуатации, значительных величинах диаметров и масс. Прокладка различных участков может быть осуществлена наземным, надземным, подводным и подземным способом. В последнем случае - с большим демпфированием грунта.

Спектр возмущающих сил может быть механического, гидродинамического, акустического происхождения, а также быть связанным с изменением температурного поля и сейсмическим воздействием.

Магистральные трубопроводы, надземные части которых проходят через горные, водные, коммуникационные и другие препятствия, изгибаются собственным весом и под действием переменного внутреннего давления могут совершать пространственные колебания. При определенных соотношениях между параметрами колебания трубопровода могут усиливаться или ослабевать.

Рассматриваются пространственные колебания трубы и заключенной в ней жидкости относительно горизонтальной оси, проходящей через опоры. В статическом состоянии труба изогнута собственным весом и находится под действием внутреннего давления. Предполагается, что она выводится из этого состояния путем отклонения на угол и от вертикальной плоскости. Коэффициент упругости опор и деформации трубы, связанные с ее выходом из плоскости изгиба, считаются малыми, поэтому изогнутая ось трубопровода является плоской кривой. При этом учитываются силы инерции Кориолиса, выталкивающая сила Архимеда и сила сопротивления, пропорциональная первой степени скорости. Колебания трубы происходят под действием переменного внутреннего давления.

Длина трубы равна L, толщина ее стенки - h, а суммарная масса однородной трубы и жидкости - m.

Слева на рис. 1.1 изображен элемент трубы длиной dx и массой dm=(m/L)*dx, а справа на этом же рисунке показаны ускорения и силы, действующие на выделенный элемент трубы.

Рисунок 1.1 - Расчетная схема изгибно-вращательных колебаний трубопровода.

Как показал анализ последствий ряда сильных землетрясений, стальные магистральные трубопроводы не всегда удовлетворительно переносят сейсмические воздействия, получают различного рода разрушения и даже разрушаются.

Интересные результаты получены при изучении работоспособности газопроводов в зонах гидродинамической активности. Вынужденные колебания возникают из-за действия многих аппаратов, одновременно работающих в сети. Примерами таких трубопроводов является трубопровод, сообщающийся с двумя и более резервуарами, на поверхности которых возникают волны различных типов с разными частотами. Типы волн давления показаны на рис. 1.2. Насосы могут вызвать вынужденные колебания на линии нагнетания, действующие на низовой трубопровод, а линии всасывания - вынужденные колебания, действующие на верховой трубопровод. Если на трубопроводе установлен байпас, то на него будут действовать два вынужденных колебания. Анализ аварий показывает, что до 60 % от их общего количества происходит на участке до 15 км от компрессорных станций.

Рисунок 1.2 - Типы волн, возникающих в трубопроводах.

Примерно такой же участок трубопровода (до 20 км от насосных агрегатов) считают динамически активным специалисты, занимающиеся вопросами отказа трубопроводов по причине коррозионного растрескивания под напряжением. Причем в зависимости от конкретных условий эксплуатации разрушение трубопроводов из-за коррозионного растрескивания под напряжением начинает проявляться через 5-16 лет после пуска их в эксплуатацию.

С помощью высокочувствительных микросейсмических съемок вдоль трасс магистральных газопроводов установлены участки с повышенными показателями вибраций технологического характера. Компрессорные станции, являющиеся мощными источниками вибраций, способствуют образованию в системе "труба-грунт" колебаний от долей до сотен герц. Уровень микросейсмических шумов у компрессорных станций на два порядка превышает уровень шумов на участках, удаленных от компрессорных станций на более чем 15 км. Выявлена способность слабых вибраций с амплитудой 10 100 мкм/с в диапазоне частот 10- 40 Гц в системе "грунт-труба" повышать уровень технологических вибраций, отрицательно влияющих на техническое состояние трубопровода.

Вышеизложенные результаты согласуются с современными представлениями о возникновении параметрических резонансов.

На основании анализа опубликованных работ на рис. 1.3 представлены некоторые причины возникновения низкочастотных колебаний трубопроводов.

Рассмотрим возможность устранения параметрического резонанса от действия продольной силы с пульсирующей составляющей. Это может быть достигнуто за счет снижения глубины пульсации и изменении упруго-диссипативной характеристики трубопровода.

Параметрические колебания в детерминированных системах при линейной и нелинейной постановке задач исследованы весьма подробно.

Рисунок 1.3 - Некоторые причины низкочастотных колебаний трубопровода

Дифференциальное уравнение для определения динамического прогиба трубопровода при действии продольной силы с пульсирующей составляющей имеет вид:

(1.1)

где P0 - постоянная составляющая продольной силы;

P1 - амплитуда переменной составляющей продольной силы;

щ - возмущающая частота;

EJ - жесткость трубопровода на изгиб;

m - масса единицы длины трубопровода.

Граничным условием шарнирно опертого участка трубопровода удовлетворяет функция

(1.2)

где T (t) - неизвестная функция времени;

l - длина рассматриваемого участка трубопровода.

При подстановке выражения (1.2) в уравнение (1.1) для n = 1, получим

(1.3)

Поскольку sin (рx/l) ?0, из условия (3) имеем:

(1.4)

где

Обозначив

(1.5)

придем к уравнению Матье

(1.6)

Уравнение Матье хорошо изучено и используется для оценки динамической устойчивости механических систем, подверженных параметрическим колебаниям.

В параметрах a и q (1.5) строят диаграмму устойчивости Айнса-Стрейта (см. рис. 1.4). Неустойчивые области заштрихованы. Так, например, точка A находится в зоне параметрического резонанса, а точка N - в зоне устойчивых колебаний.

Рисунок 1.4 - Диаграмма Айнса-Стретта с тремя областями резонанса

Показанные на диаграмме устойчивости три резонанса являются наиболее опасными при параметрических колебаниях, особенно первый при a=1, когда щ=2щ0, где щ - частота возбуждения, щ0 - частота собственных колебаний механической системы. Оценим свойства параметрических колебаний при изменении частоты возбуждения щ. Как показывают выражения (1.5) с увеличением частоты возбуждения щ (рис. 2) параметры a и q будут уменьшаться по прямой, приближающейся к началу координат с угловым коэффициентом

(1.7)

Линия 1 (см. рис. 1.4) при этом пересекает чередующиеся области устойчивости и неустойчивости. В областях неустойчивости возникает параметрический резонанс. С увеличением глубины пульсации q за счет роста углового коэффициента K линия 2 пересекает области неустойчивости с большими интервалами и зоны параметрического резонанса расширяются.

Уменьшая коэффициент K можно снизить величину интервалов резонансных зон. Это достигается (см. выражение 1.7) путем снижения величины составляющей продольной силы P0, пульсирующей составляющей P1, повышением величины критической силы Pкр.

В качестве примера на диаграмме Айнса-Стретта (см. рис. 1.5) показаны области динамической неустойчивости трубопровода диаметром 402 мм с толщиной стенки 15 мм при разных длинах участков. Если для трубопровода при l=150 м и l=200 м (линии 1 и 2) неустойчивость наступает вблизи значений a=1 и a=4, то с увеличением длины l и глубины пульсации (линии 3 и 4) возрастают интервалы динамической неустойчивости.

Рисунок 1.5. Фрагмент диаграммы Айнса-Стреттас главным и вторым параметрическими резонансами

Амплитуды колебаний быстро убывают с увеличением номера резонанса. Так, при q=0,05 амплитуды соответствующие первому, второму, третьему резонансам относятся как 1:0,22:0,5. Если в системе присутствует диссипация, то эта разница будет еще больше. Поэтому при наличии затухания рассматривается обычно главный параметрический резонанс (щ=2щ0) как наиболее опасный с минимальным изменением области неустойчивости.

При наличии затухания чаще пользуются не диаграммой Айнса-Стретта, а диаграммой относительно частоты возбуждения и. На рис. 1.6 показаны области относительно частоты возбуждения для главного и второго параметрических резонансов без демпфирования и при декрементах затухания Д=0,2 и Д=0,4.

Рисунок 1.6 - Области неустойчивости относительно частоты возбуждения и для главного и второго параметрических резонансов:

1 - область неустойчивости без демпфирования;

2 - область неустойчивости при декременте затухания D = 0,2;

3 - область неустойчивости при декременте затухания D = 0,4

Как следует из рис. 1.6 с увеличением затухания области неустойчивости смещаются выше оси абсцисс и используя демпфирование можно полностью исключить параметрические колебания, если глубина пульсации не достигает областей неустойчивости. Параметрические резонансы подавляются сильнее с увеличением их номера.

Для главного параметрического резонанса критическое значение частоты возбуждения равно

(1.8)

где

Здесь щ0 - частота собственных колебаний; для шарнирно-опертого трубопровода ; е - коэффициент затухания.

Критическое значение частоты возбуждения для второго параметрического резонанса будет иметь следующий вид

(1.9)

Приближенное значение коэффициента возбуждения м при котором возникает неустойчивость системы будет равно для главного резонанса м=Д/р, для второго резонанса

Наряду с введением сопротивления для повышения устойчивости трубопроводов используются динамические гасители колебаний. Установка динамических гасителей позволяет отстроиться от параметрического резонанса. Динамический гаситель колебаний с вязким трением раздваивает главную область параметрического резонанса (см. рис. 1.7). Изменение настройки гасителя по массе и частоте собственных колебаний позволят сдвигать эти области вправо от оси ординат исключая при определенной глубине пульсации попадание в область динамической неустойчивости.

Рисунок 1.7 - Области главного параметрического резонанса:

- область неустойчивости без демпфера;

- область неустойчивости с демпфером

Постоянно меняющиеся условия эксплуатации в связи с пересеченной местностью, различными частотными и упругими характеристиками грунтов, всплытием трубопроводов и воздействием других факторов делает задачу об устранении параметрического резонанса трубопровода по трассе достаточно сложной.

Изменение частотных параметров на разных участках трубопровода (см. рис. 8) меняет локальную добротность системы, т.е. ее восприимчивость к внешним воздействиям. При высокой добротности системы, последняя будет реагировать, в первую очередь, на ту часть спектра параметрического возбуждения, частоты которой близки к 2щ0.

Рисунок 1.8 - Причины, способствующие изменению собственной частоты трубопровода при эксплуатации

Для предупреждения параметрических колебаний трубопровода можно рекомендовать следующие мероприятия:

- устранение или уменьшение возбуждающих сил;

-стабилизация динамической устойчивости трубопровода путем изменения его параметров;

- использование динамических гасителей и демпферов с линейной и нелинейной характеристиками;

- демпфирование трубопровода грунтом, подсыпкой.

Так как во многих случаях не имеется возможности устранить совсем или уменьшить возбуждающее воздействие, как, например, в случае сейсмического воздействия, то необходимо учитывать стабилизацию динамической устойчивости трубопровода путем изменения его параметров на этапе проектирования. В связи с чем, возникает необходимость в создании математической модели для определения собственной частоты колебаний трубопровода.