43. Виброперемешивание и струйное перемешивание бетонных смесей. Приготовление фибробетонных смесей
При виброперемешиваниии составляющие бетонной смеси перемешиваются в вибробетономешалке не с помощью лопастей или при свободном падении материала, а благодаря интенсивным вибрационным импульсам, которые передаются составляющим смеси через корпус смесителя. При таком перемешивании все загруженные в смеситель частицы приходят в движение, .различные слои смеси внедряются друг в друга, благодаря чему достигается высокая однородность приготовленного материала. В подобных смесителях, как и в обычных бетономешалках, смешиваются одновременно все компоненты смеси: цемент, во¬да, песок и щебень (гравий). При вибрации крупный заполни¬тель оказывает на затворенный цемент мелющее действие. Це¬ментное тесто находится в условиях, близких к создающимся в вибрационной мельнице с мелющими телами. Таким образом, при виброперемешивании бетонной смеси происходит и актива¬ция вяжущего, вода равномерно распределяется в цементе, раз¬рушаются цементные флокулы, достигается некоторое диспер¬гирование цементных зерен.
Вибрационное смешение особенно эффективно для жестких смесей с низким В/Ц, которые труднее приготовить в обычных бетономешалках.
Этот способ является более эффективным средством акти¬вации, чем приготовление бетонных смесей на домолотом вяжу¬щем, так как при виброперемешивании достигается не только увеличение активности цемента или обеспечение, как при мок¬ром домоле, микрооднородности цементного теста, но и значи¬тельно повышается макрооднородность [34].
В настоящее время ведутся работы по струйному перемешиванию бетонной смеси, заключающемуся в интенсивном взаимодействии ее составляющих в турбулентных потоках псевдокипящего слоя, создаваемых энергосмесителями. К ним относятся сжатый воздух с давлением 0,3 МПа и перегретый пар с температурой 85...95 °С, подаваемые в специальный струйный смесиВ технологию приготовления бетонной смеси начинает внедряться перемешивание с нагреванием смеси. Суть этого метода состоит в том, что разогрев бетонной смеси до 60...65 °С производят паром, подаваемым в смеситель в процессе ее перемешивания. Такое нагревание происходит равномерно, проще и во много раз быстрее, чем при предварительном нагреве воды и заполнителей, а также электроразогреве смеси.
Струйное перемешивание применяют для приготовления жестких мелкозернистых смесей. Две струи, создаваемые сжатым воздухом под давлением не менее 0,29 МПа и паром температурой 85…90°С, направленные навстречу друг другу, захватывают зерна цемента и песка и образуют «кипящий слой» с большим градиентом скоростей. Гидратные оболочки разрушаются, вязкость смеси понижается, вода равномерно распределяется по всему объему. Смесь становится однородной, физико-механические свойства твердеющих бетонов улучшаются.
В технологии фибробетонов вопросы приготовления смесей занимают особое место, так как именно на этой стадии происходит армирование бетона волокнами, обеспечение равномерности распределения которых закладывает основы для получения материала с улучшенными свойствами. В настоящее время исследования, связанные с процессом приготовления фибробетонных смесей, развиваются по двум направлениям: первое направление основано на разработке принципиально новых типов смесителей, второе учитывает возможность получения фиброармированных смесей в существующих серийно выпускаемых смесителях. Несмотря на различный подход, основная задача исследований сводится к снижению трудоемкости и энергоемкости процессов дозирования и перемешивания с обеспечением равномерного распределения армирующих волокон в объеме смеси. При использовании в качестве дисперсной арматуры неметаллических волокон в процессе перемешивания необходимо обеспечить распушку последних, то есть разделить отрезки комплексных нитей на элементарные волокна. Очевидно, что в результате распушки появляется возможность уменьшения длины волокон или их содержания без снижения smax, что очень важно, так как значительно облегчает процесс приготовления смеси. Следует отметить, что по мере распушки неметаллических волокон возрастает их число в объеме смеси, следовательно расстояние между фибрами уменьшается даже при постоянном значении процента армирования m, что приводит к заметному повышению трещиностойкости композита. Таким образом, распушка волокон заключает в себе потенциальные возможности улучшения свойств фибробетона, которые должны быть реализованы именно в процессе приготовления смеси.
- 1. Определение материала бетон. Общие сведения о бетона. Классификация бетонов
- 2. Вяжущие, применяемые для приготовления бетона. Виды, классификация
- 3. Заполнители для бетонов. Их виды, свойства
- 4. Добавки, применяемые для приготовления бетона
- 5. Требования к воде для приготовления бетона
- 6. Общий порядок проектирования состава
- 7. Тяжелобетонная смесь. Пластичность и тиксотропность
- 8. Удобоукдываемость бетонной смеси
- 9. Реологические свойства смеси. Влияние на нее различных технологических факторов
- 10. Водопотребность бетонных смесей и пути ее снижения.
- 11. Твердение бетона. Химические процессы при твердении бетона
- Способы ускорения твердения бетона
- Физические процессы при тво
- Прочность бетона. Физико-химические основы прочности бетона.
- 16. Поведение бетона под нагрузкой
- 17. Сопротивление бетона растяжению, изгибу, расколу, срезу и сжатию.
- 18. Прочность сцепления бетона со сталью и факторы, ее определяющие.
- 19. Классы. Нормативная и расчетная прочность
- 20. Модуль упругости бетона и зависимость его от различных факторов.
- 21. Осадка, усадка и набухание бетона
- 22. Ползучесть бетона
- 23. Физические свойства бетона и теплофизические свойства бетона.
- 24. Акустические свойства бетона
- 25. Легкие бетоны на пористых заполнителях. Их виды и классификация. Проектирование состава легких бетонов.
- 26. Крупнопористый бетон – свойства и области применения
- 27. Силикатный бетон. Виды и технические характеристики.
- 28. Ячеистые бетоны. Классификация. Проектирование состава ячеистых бетонов.
- 29 Фибробетон, мелкозернистый бетон. Свойства, особенности технологии.
- 30. Гидротехнический бетон. Дорожный и декоративный. Основные свойства, особенности технологии.
- 31. Кислотоупорный бетон, гипсовые бетоны, бетоны на гипсоцементнопуццолановом вяжущем, свойства, области применения.
- 32. Шлакощелочные бетоны, жаростойкие бетоны, полимерцементные бетоны, полимербетоны, свойства, области применения
- 33. Бетон для защиты от радиоактивного излучения, свойства, особенности технологии. Металлический бетон, свойства, сырьевые материалы, технология.
- 34 35 36 37 39 Марины
- 40. Склады заполнителей. Их разновидности и характеристика….
- 41. Дозирование составляющих компонентов бетонной смеси
- 42. Приготовление бетонной смеси в смесителях гравитационного действия и принудительного действия
- 43. Виброперемешивание и струйное перемешивание бетонных смесей. Приготовление фибробетонных смесей
- 44. Бетоносмесительные отделения заводов
- 45. Разновидности способов транспортирования бетонной смеси.
- 46. Роль математических методов в управлении процессом приготовления бетонной смеси
- 47. Способы ускорения твердения бетона Ускорение твердения в бетонных и железобетонных изделиях:
- 48. Тепловая обработка с целью ускорения твердения бетона
- 51. Автоклавная обработка изделий.
- 2. Автоклавная обработка изделий, наиболее рациональные области применения, конструкции автоклавов, рациональные режимы то (привести схемы, графики).
- 52. Контактный обогрев, электрообогрев, обогрев лучистой энергией и лучистыми токами
- 54. Установки для тепловой обработки бетонных и железобетонных изделий
- 2.Установки для то бетонных и ж/б изделий:
- 55. Автоматизация процесса тепловой обработки, мероприятия по экономии топливно-энергетических ресурсов.