§ 9.6. Реконструкция жилых зданий с применением встроенных монолитных систем
Монолитные встроенные системы позволяют адаптировать здание к разнообразным архитектурным формам и планам. Монолитный вариант реконструктивных работ может быть однозначно рекомендован в зданиях криволинейной и сложной форм плана, с различной высотой этажей, где применение сборных конструкций сопряжено с использованием большого числа доборных элементов и многообразием типоразмеров. При современных технологии и организации работ монолитные системы являются индустриальными и технологичными, а по темпам ведения реконструктивных работ приближаются к сборному строительству. Индустриальность монолитных систем определяется достижениями в области создания опалубок, адаптированных к различным технологическим условиям, а также механизацией процессов транспортирования, укладки и уплотнения бетонной смеси. Немаловажная роль при этом отводится методам, интенсифицирующим твердение бетона, а также использованию химических добавок, регулирующих технологические свойства смесей. Монолитные встроенные системы повышают капитальность зданий и обеспечивают их достаточно высокую долговечность. Проектирование встроенных монолитных систем предусматривает использование конструктивных решений с изменением расчетной схемы здания и с сохранением ее.
При сохранении общей расчетной схемы встроенные монолитные системы могут выполняться по стеновой и перекрестной схемам, когда в качестве несущих конструктивных элементов выступают внутренние поперечные и продольные стены совместно с монолитными перекрытиями, а также безбалочные каркасные системы с ядрами жесткости в виде лестнично-лифтовых узлов (рис. 9.22).
Рис. 9.22. Стеновая (а) и безбалочная (б) встроенные системы реконструируемых зданий 1 - внутренние несущие монолитные стены; 2 - лифтовая шахта; 3 - монолитные колонны безбалочной системы; 4 - монолитные перекрытия
Применение встроенной монолитной системы с изменением расчетной схемы используется в случаях, когда несущая способность наружных стен недостаточна для восприятия изменившихся нагрузок.
Наиболее рационально использование встроенных монолитных систем при реконструкции с надстройкой несколькими этажами. Имея самостоятельный фундамент, встроенная конструкция воспринимает все изменившиеся нагрузки, а наружные стены выступают в роли самонесущих ограждающих элементов.
Для реализации концепции свободной планировки целесообразно использование безбалочной встроенной каркасной системы. Ее применение позволяет осуществлять планировку помещений как в сторону увеличения числа комнат, так и укрупнения их. Гибкая система планировки осуществляется за счет использования индустриальных перегородок из пазогребневых блоков или каркасно-обшивочных систем.
Применение встроенных безбалочных систем с опиранием перекрытий на наружные стены (рис. 9.23, а) осуществляется путем устройства штраб и специальных анкеров, обеспечивающих связь перекрытия со стеновой конструкцией.
Рис. 9.23. Конструктивно-технологические схемы устройства монолитных встроенных систем с опиранием плит перекрытия на стены (а) и колонны (б) 1 - наружная стена; 2 - монолитные перекрытия; 3 - палуба; 4, 5 - балки и прогоны; 6 - опорные телескопические стойки
Для встроенных систем безбалочного или каркасного типа, когда наружные стены исключаются из работы, схемы дополняются системой наружных колонн, примыкающих к стенам или монолитным стеновым элементам. Их расположение в плане кратно простеночному расстоянию. Монолитный вариант позволяет учесть особенность расположения оконных проемов без каких-либо дополнительных решений (рис. 9.23, б).
Создается самостоятельная встроенная система, которая рассчитывается на технологические нагрузки, включая надстраиваемые этажи. При этом стеновое ограждение выступает как самонесущее и исключаются нагрузки от элементов встроенного каркаса. Это обстоятельство позволяет снизить объем работ по усилению наружных стен. При возведении надстраиваемых этажей возможна передача нагрузки от стенового ограждения на элементы встроенной системы, что учитывается при расчете ее элементов.
Применение облегченных опалубочных систем позволяет существенно снизить их массу и, соответственно, трудоемкость установки.
Отличительной особенностью производства работ при реконструкции зданий является высокий уровень стесненности. Это обстоятельство требует использования преимущественно мелкощитовой опалубки.
Высокой технологичностью обладают опалубки перекрытий. Использование телескопических стоек обеспечивает установку опалубки любой высоты этажа, что весьма важно при реконструктивных работах, когда этот параметр колеблется в достаточно широких пределах. Особое внимание при выборе опалубочной системы перекрытий отводится процессу демонтажа. Это вызвано наличием стенового ограждения, что требует, как правило, немеханизированных методов. Трудоемкость этого процесса повышается вследствие большого уровня затрат на ручную переноску щитов, ригелей, стоек и других элементов в пределах одной захватки, подготовки и перемещения их на очередную.
Уровень технологичности арматурных работ, как показала практика, определяется не степенью заводской готовности плоских и пространственных каркасов, а итоговым показателем удельных затрат. Ручная вязка каркасов методом наращивания позволяет более рационально использовать грузоподъемность транспортных средств, снизить до минимума затраты на электроэнергию, повысить надежность систем в результате исключения сварочных работ. В то же время это позволяет учитывать конструктивные особенности, требующие индивидуального решения по степени армирования отдельных узлов и деталей.
Транспортирование, укладка и уплотнение бетонной смеси занимают заметное место в системе монолитного строительства. Не вдаваясь в формирование рыночной цены товарного бетона, следует отметить ряд технологических факторов, влияющих на себестоимость готовой продукции. К ним относятся прежде всего приобъектные средства подачи бетонной смеси и степень механизации.
Опыт реконструктивных работ показывает, что использование авто- и стационарных бетононасосов незаменимо в стесненных условиях производства работ, например, при бетонировании монолитных фундаментных плит, перекрытий и других конструктивных элементов с подачей смеси через оконные проемы, в условиях, когда установка грузоподъемного механизма затруднена.
Производство работ по возведению монолитных встроенных систем предусматривает непрерывный цикл работ с переходом на захватки. Это обстоятельство требует расчета потребного количества опалубочных элементов, средств ускоренного твердения и количества рабочих, занятых на отдельных процессах.
Процесс возведения встроенной системы разделяется на несколько технологических циклов, включающих армирование и установку опалубки вертикальных конструкций стен и колонн. Эти работы выполняются специализированным звеном. После бетонирования конструкций и приобретения распалубочной прочности осуществляются демонтаж опалубки, ее очистка и установка на новой захватке.
Отдельным звеном осуществляется цикл устройства опалубки горизонтальных конструкций - перекрытий и балок, включающий их армирование и бетонирование. После набора распалубочной прочности осуществляются демонтаж и перенос на очередную захватку.
Подбор количества рабочих осуществляется таким образом, чтобы работы по возведению вертикальных конструкций опережали устройство горизонтальных. Число рабочих на устройстве опалубочных систем определяется по общей трудоемкости работ и требуемой продолжительности установки. Аналогичным образом определяется количество арматурщиков, которые выполняют армирование с совмещением опалубочных работ.
Укладку и уплотнение бетонной смеси осуществляют после готовности опалубочных и арматурных работ и их приемки.
Преимущественное влияние на формирование потоков оказывает цикл твердения бетона. Он является определяющим при возведении монолитных конструкций и колеблется в широком диапазоне. Поэтому организация производства работ прежде всего зависит от технологии и интенсивности набора прочности бетоном. При использовании мягких режимов тепловой обработки (прогрев греющими проводами, камерный прогрев теплогенераторами) период набора распалубочной прочности колеблется в пределах 60-72 ч. Достаточно высокая продолжительность твердения требует комплекта опалубки не менее чем на две захватки.
Более эффективным является переход на жесткие режимы. Так, использование термоактивных щитов с удельной мощностью до 500 Вт/м2 позволяет реализовать технологические режимы, обеспечивающие набор распалубочной прочности в течение 18-24 ч (рис. 9.24).
Рис. 9.24. Графики набора прочности бетоном (а) и рабочий момент установки термоактивных щитов (б) I - в термоактивной опалубке; II - прогревом греющими проводами; III - камерным прогревом перекрытий
При производстве работ с положительными температурами окружающей среды приобретение бетоном 70 % прочности достигается при удельной мощности термоактивных щитов до 300 Вт/м2 за тот же период.
Жесткие режимы тепловой обработки требуют более высоких энергетических мощностей. Поэтому организация работ должна планироваться таким образом, чтобы прогрев бетона приходился на суточный период с льготными тарифами на электроэнергию.
В таблице 9.3 приведен примерный график работ на захватках, когда применяют мягкие I и жесткие II режимы тепловой обработки. При расчетной продолжительности работ t1...n различных процессов и их максимального совмещения во времени жесткие режимы тепловой обработки обеспечивают снижение времени цикла от установки опалубки до демонтажа на величину T,которая имеет тенденцию увеличения при возрастании площади захваток и их количества. Мягкие режимы тепловой обработки не только увеличивают общую продолжительность цикла, но и способствуют возникновению технологических перерывов Tn.
Таблица 9.3
- Реконструкция жилых зданий Часть I Технологии восстановления эксплуатационной надежности жилых зданий
- Реконструкция жилых зданий Часть II Технологии реконструкции жилых зданий и застройки
- Содержание
- Введение
- Глава 9 реконструкция жилого фонда ранних построек
- § 9.1. Технология встроенных систем
- § 9.2. Встроенная система из сборного каркаса
- § 9.3. Сборно-монолитная встроенная каркасная система с преднапряженными несущими конструкциями
- § 9.4. Реконструкция зданий с применением сборно-монолитных встроенных систем
- § 9.5. Технология реконструкции зданий с использованием безбалочной каркасной системы
- График производства работ по устройству сборно-монолитных перекрытий
- § 9.6. Реконструкция жилых зданий с применением встроенных монолитных систем
- Графики производства работ по устройству монолитного перекрытия при использовании мягких (I) и жестких (II) режимов прогрева бетона
- § 9.7. Надстройка зданий
- § 9.8. Реконструкция жилых зданий с пристройкой объемов
- Глава 10 технологии реконструкции малоэтажных зданий первых массовых серий
- § 10.1. Зарубежный опыт реконструкции и модернизации жилых зданий
- § 10.2. Общая характеристика малоэтажного жилого фонда рф
- § 10.3. Конструктивно-технологические решения
- Конструктивно-технологические решения реконструкции жилых зданий массовых серий Конструктивно-технологические решения реконструкции жилых зданий массовых серий
- § 10.4. Надстройка мансардными этажами
- Типы мансардных этажей
- График производства работ по возведению мансардного этажа
- График производства работ по возведению мансардного этажа
- § 10.5. Пристройка лождий, эркеров и лифтовых шахт
- Характеристика пристраиваемых объемных блоков
- § 10.6. Индустриальные технологии надстройки и обстройки зданий из объемных блоков
- Технические характеристики средств механизации
- График производства работ по реконструкции жилого дома с обстройкой и 2-этажной надстройкой
- Основные типы объемных блоков
- § 10.7. Комплексная реконструкция зданий с пристройкой объемов и двухэтажной надстройкой
- График производства работ по комплексной реконструкции 3-секционного жилого дома
- § 10.8. Реконструкция малоэтажных домов с перепланировкой помещений
- §10.9. Особенности производства работ при реконструкции жилых зданий без отселения жильцов
- § 10.10. Технологии реконструкции зданий с уширением корпусов и надстройкой этажей
- Наземная часть пристроек
- Технологическая последовательность производства работ при реконструкции 5-секционного жилого дома серии I-515
- Технико-экономические показатели
- Глава II реконструкция 9-этажных жилых зданий
- § 11.1. Конструктивно-технологические решения по реконструкции 9-этажных жилых зданий
- § 11.2. Технологии надстройки зданий
- § 11.3. Двухэтажная надстройка 9-этажных кирпичных зданий
- § 11.4. Надстройка кирпичных и блочных зданий с использованием складывающегося рамного каркаса
- Примерный график производства работ по надстройке 3-секционного жилого дома
- § 11.5. Особенности надстройки зданий со скатной кровлей
- § 11.6. Реконструкция жилых зданий с пристройкой объемов
- § 11.7. Оценка инвестиционных проектов
- Глава 12 технологии перемещения зданий
- § 12.1. Общие положения
- § 12.2. Технология передвижки зданий
- Распределение затрат на передвижку зданий по видам работ, %
- § 12.3. Основные положения по технологическим расчетам и подбору средств передвижки зданий
- § 12.4. Опыт передвижки зданий в Москве
- § 12.5. Совершенствование технологии передвижки зданий
- § 12.6. Технология вертикального подъема зданий
- § 12.7. Технологии исправления крена зданий
- Глава 13 демонтаж и снос строений
- § 13.1. Взрывной метод разрушения зданий
- § 13.2. Поэлементная разборка зданий
- § 13.3. Технология сноса крупнопанельных зданий
- Перечень машин и оборудования
- § 13.4. Оптимизация работы машин по демонтажу и разрушению зданий
- § 13.5. Технология переработки продуктов разрушения
- Глава 14 современные технологии реконструкции застройки городов
- § 14.1. Характеристика застройки городов
- § 14.2. Общие принципы реконструкции застройки
- § 14.3. Инженерная подготовка производства
- § 14.4. Внутриквартальные производственные базы
- § 14.5. Технологические особенности возведения многоэтажных вставок
- § 14.6. Возведение заглубленных сооружений с ограждением котлованов
- § 14.7. Возведение подземных сооружений способом «стена в грунте»
- § 14.8. Возведение заглубленных объектов по струйной технологии
- § 14.9. Технологии возведения заглубленных частей зданий и сооружений в сложных инженерно-геологических условиях
- § 14.10. Геотехническое сопровождение реконструкции зданий и застройки
- Заключение
- Список литературы