logo
РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ часть 2

§ 12.3. Основные положения по технологическим расчетам и подбору средств передвижки зданий

Процесс передвижки требует выполнения ряда технологических расчетов, обеспечивающих сохранение устойчивости здания на всех технологических этапах производства работ.

Одним из первых этапов является оценка степени износа конструктивных элементов путем диагностики их технического состояния. Данный этап работ предусматривает разработку мероприятий по обеспечению геометрической неизменяемости объекта передвижки, оценку физико-механических и прочностных характеристик основных узлов, стыков и здания в целом. Производятся поверочные расчеты на динамические нагрузки при перемещении, а также исследуется поведение объекта в нештатных ситуациях, когда возникают обстоятельства с неравномерным распределением нагрузок от массы здания на пути транспортировки и другие процессы, имеющие случайный характер воздействия.

Итогами данного цикла работ являются усиление конструктивных элементов, расчет и создание опорного контура здания, обеспечивающего восприятие динамических и статических нагрузок. Осуществляется подбор сечения обвязочного пояса и определяются способы его соединения с отделяемой частью здания. Расчеты ведутся из предположения, что обвязочный пояс, являясь диском жесткости, обеспечивает совместную работу с конструктивными элементами и обеспечивает пространственную жесткость и геометрическую неизменяемость здания в целом.

Обвязочный пояс устраивается по наружным и внутренним стенам путем подведения металлических балок таврового или двутаврового сечения с болтовым креплением к стенам и сварочными соединениями между собой. Для обеспечения совместной работы с элементами стен части обвязочного пояса омоноличиваются мелкозернистым бетоном.

При достаточно высокой степени износа стен осуществляются их усиление, разборка отдельных участков и возведение новой кладки. В ряде случаев устанавливается монолитный железобетонный пояс, обеспечивающий более высокую пространственную жесткость основания здания.

При обеспечении геометрической жесткости здания, отделенного от фундамента, осуществляются подбор и расчет накатных путей в зависимости от технологической схемы перемещения.

На рис. 12.8 приведен вариант перемещения зданий на выносных консолях и ходовых балках.

Рис12.8. Схема передвижки здания на выносных опорах (аб) и расчетные схемы элементов (вгде)

Последовательность расчета состоит в определении общей массы здания и распределении сосредоточенных нагрузок на балки выносных опор. С учетом пролета определяются изгибающий момент, момент сопротивления и устанавливается сечение балок.

Подбор сечения ходовых балок определяется из расчетной схемы, представляющей многопролетную балку с сосредоточенными нагрузками Р1. При этом каждый пролет соответствует расстоянию между роликовыми катучими опорами.

При расчете балки определяется площадь опирания на катки в результате частичного смятия в зоне контакта.

С учетом дополнительных масс от обвязочных, накатных балок, роликовых опор и путей осуществляется подбор площади шпал, обеспечивающей восприятие суммарной нагрузки на основание. При этом не допускается осадка путей за счет деформирования грунтов основания, т.е. должно выполняться условие Fосн[σтр]>>∑Р.

При расчете конструктивных элементов принимается запас прочности не менее двух.

Особое внимание уделяется расчету и размещению накатных путей. Они рассчитываются как балки на упругом основании. Определяющая роль при этом отводится характеристикам грунтового основания - плотности, прочности идеформативности. Как показал опыт, в условиях городской застройки используются основание в виде песчано-гравийной или щебеночной подсыпки со сплошным или рассредоточенным расположением железобетонных или деревянных шпал, а также устройство железобетонного основания.

При использовании платформ с роликовыми опорами осуществляются подбор сечения ее элементов из расчета сосредоточенных нагрузок от массы здания в момент его подъема гидродомкратами и перемещение по накатным путям (рис. 12.9), расчет поясов платформы от реакции на роликовые опоры, а также элементы крепления роликовых опор (направляющие, оси роликовых опор и т.п.). Подбор сечения накатных путей осуществляется путем расчета неразрезных балок на подвижные и сосредоточенные нагрузки. Осуществляются подбор шпальных клеток или другого вида опор, расположенных в подвальной части здания, и шаг расположения шпал по трассе перемещения в зависимости от физико-механических характеристик грунтов.

Рис12.9. Технологические и расчетные схемы передвижки зданий с применением рам с роликовыми опорами и гидравлическими домкратами а - схема размещения рам с гидравлическими домкратами; б - перемещение здания с применением горизонтально установленных домкратов и упоров; в - расчетные схемы и нагрузки на элементы платформ и путей; г - схема размещения гидравлических домкратов, насосной станции (НС) и управляемой системы (УС); д - графики цикличного и непрерывного перемещения здания; 1 - обвязочный пояс; 2 - платформы; 3 - гидравлические домкраты; 4 - роликовые опоры; 5 - накатные пути; 6 - основание из шпал; 7 - гидродомкрат

Как правило, для передвижки зданий используется несколько платформ с роликовыми опорами (рис. 12.9,д), которые подводят под обвязочные балки через проемы в торцевых стенах. При этом гидродомкраты размещают таким образом, чтобы их оси совпадали с осями внутренних стен.

После установки платформ осуществляются подъем здания на высоту 5-6 см и дальнейшее перемещение. Для обеспечения одновременного вертикального подъема осуществляется синхронизация работы гидродомкратов с помощью управляемого устройства к насосной станции и компьютерной системы слежения. В процессе перемещения по горизонтальным путям в случае просадки основания гидродомкраты позволяют обеспечить заданный уровень положения здания.

Технологический режим передвижки здания с помощью гидравлических домкратов является цикличным. Шаг перемещения соответствует ходу штока домкратов и составляет 500- 1000 мм. Каждый цикл состоит из установки упоров на рельсовых путях и синхронной работы домкратов. Максимальное усилие требуется в момент сдвижки здания, когда величина инерционных сил максимальна (рис. 12.9,г).

Усилие перемещения по горизонтали может быть рассчитано исходя из общей массы здания Р, количества опорных роликов п, их диаметра  и коэффициента трения качения f. С увеличением диаметра опорных роликов усилие перемещения снижается.

В общем виде требуемое усилие перемещения может быть определено по зависимости N=2PfK/Ӕ.

В то же время момент сил от гидродомкратов зависит от положения штоков относительно центра вращения роликовых опор. Как правило, гидродомкраты горизонтального действия размещают на обвязочных балках, чем и достигается плечо действия сил.

Для обеспечения непрерывного перемещения объектов целесообразно использовать спаренные домкраты, работающие в противофазе. Технологический эффект передвижки повышается при использовании упорных площадок, объединенных со штоком гидроцилиндров и имеющих фиксирующие устройства гидравлического действия.