logo
РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ часть 2

Распределение затрат на передвижку зданий по видам работ, %

№ п.п.

Наименование затрат

Усредненные затраты, %

1

Геолого-разведочные, геодезические и проектно-сметные работы

4,5

2

Подготовка площадки, разборка внутренних конструкций в подвале, устройство временных входов в здание, ограждение и перекрытие траншей и др.

1,5

3

Земляные работы

13

4

Устройство щебеночного основания под пути

4

5

Устройство и демонтаж верхнего строения путей

6

6

Устройство и демонтаж рамы

9,5

7

Устройство и демонтаж ходовых балок

6,5

8

Посадка здания на катки пути

3,5

9

Перемещение здания

2

10

Устройство фундаментов на новом месте

11,5

11

Посадка здания на новые фундаменты

6,5

12

Санитарно-технические устройства: демонтаж, устройство временных присоединений, их обслуживание, восстановление постоянных сетей

6,5

13

Электротехнические работы

3

14

Геодезическое обслуживание работ

3

15

Временные сооружения

2,5

16

Восстановительные работы

12

17

Разные работы

4,5

 

Всего

100

Принципиальная конструктивно-технологическая схема передвижения зданий приведена на рис. 12.2. Она включает обвязочный пояс, создаваемый по периметру всех стеновых элементов и объединяемый в одно целое; ходовые балки из спаренных двутавров; стальные катки, располагаемые между ходовыми балками и рельсами, размещаемыми на шпалах и бетонной подготовке. Ходовые балки размещаются перпендикулярно или с некоторым углом наклона к обвязочным. Для обеспечения равномерного распределения нагрузки от здания на стальные катки и рельсы устанавливается единый горизонт, который обеспечивается соответствующей установкой рельс и ликвидацией зазора между ходовыми балками и обвязочным поясом с помощью клиновых вкладышей.

Рис12.2. Технологические этапы подготовки к передвижке и перемещению здания а - общая технологическая схема; 6- технологические этапы; в - подъем и перемещение здания с помощью рамы с роликовыми опорами и гидравлическими домкратами; - устройство пропила по линии сдвижки; II - установка обвязочного пояса; III - устройство накатных путей; IV - подъем здания гидродомкратами и подведение ходовых балок и роликовых опор; V - установка гидравлических толкателей и перемещение здания; 1 - перемещаемое здание; 2 - устройство пропила ленточной пилой (3); 4 - обвязочный пояс по наружным и внутренним стенам; 5 - накатные пути; 67 - основание и шпалы; 8 - гидравлический домкрат; 9 - ходовая балка; 10 - стальные катки; 11 - гидродомкрат горизонтального действия; 12 - механические упоры; 1314 - платформа с роликовыми опорами и гидравлическими домкратами (8); 14 - накатные пути специального профиля

Здесь рассмотрена простейшая конструктивная схема, требующая большого расхода металла и ручного труда для установки всех элементов. Она использовалась в большинстве случаев передвижки зданий в Москве и других городах.

С развитием техники и технологии конструктивное решение видоизменялось. Использовались платформенные конструкции, снабженные стационарными роликовыми опорами, а также системой гидравлических домкратов, обеспечивающих выверку перемещаемого здания в горизонтальном и вертикальном положениях и его подъем на требуемую высоту.

После выверки здания осуществлялось его перемещение с использованием системы гидравлических домкратов горизонтального действия.

Важнейшей задачей является выбор места будущего расположения здания в городской среде. Это обстоятельство является исключительно важным, так как определяет не только протяженность путей движения, но и траектории перемещения.

Наиболее простым решением является передвижка здания по прямой. В реальных условиях городской застройки имеют место более сложные траектории, что, безусловно, усложняет и удорожает процесс передвижки зданий.

На рис. 12.3 приведены варианты перемещения зданий путем разворота по окружности, поворота на 90° с последующим линейным движением и поворотом на 90°. В зависимости от траектории движения здания перемещают в один или несколько этапов.

Рис12.3. Траектории перемещения зданий а - методом поворота; б - поворотом на 90° и перемещением по прямой с последующим поворотом на 90°; в - перемещение по радиусу R1, с поворотом на 180°; ЦП - центр поворота

Работы подготовительного периода

Цикл подготовительных работ включает обследование здания, определение фактического плана, уточнение геометрических размеров толщины стен, колонн, фундаментов и других конструктивных элементов, определение массы здания. Этот период включает также геологические исследования траектории движения здания с целью определения несущей способности грунтов. Осуществляются снос строений и подготовка площадки к производству работ: перекладка сетей, устройство временных дорог, ограждений, размещение бытовых и складских помещений, временного электро-, водо- и теплоснабжения и др.

В работы подготовительного периода входят также строительные процессы по планировке трассы перемещения здания и ее обустройству.

Отделение здания от фундамента и устройство обвязочного пояса

Отделение здания от фундамента осуществляется по линии среза, которая в каждом конкретном случае принимается с учетом конструктивных особенностей. Как правило, линия среза располагается между перекрытием подвальной части и основанием фундамента (рис. 12.4,а) таким образом, чтобы обеспечивалась возможность устройства обвязочного пояса, расположения опорных балок и путей для передвижки здания. При расположении ЛС ниже дневной поверхности осуществляется отрывка траншей по периметру здания на глубину размещения путей. Разрезка здания по плоскости линии среза осуществляется с применением дисковых алмазных пил, гибких цепных пил и других средств механизации. Она осуществляется по захваткам длиной 4-6 м таким образом, чтобы обеспечить равномерную осадку здания по всей плоскости.

Рис12.4. Положение линии среза ЛС (а), обвязочных балок (б) и монолитных ж/б поясов (в) 1 - наружная стена здания; 2 - подвальное перекрытие; 3 - линия среза пропила; 4 - приямок по периметру наружных стен; 5 - обвязочный пояс из швеллеров или двутавров; 6 - монолитный обвязочный пояс

Нижняя зона стен и других конструктивных элементов укрепляется системой взаимообъединяемых стальных балок или железобетонным поясом (рис. 12.4,б). При этом создается высокая пространственная жесткость системы, обеспечивающая геометрическую неизменяемость контура и восприятие нагрузок от массы здания. Стальные обвязочные балки служат основанием для установки ходовых балок.

Устройство путей и механизмов перемещения здания

Пути перемещения здания устраиваются в подвальной части после установки обвязочного пояса. Демонтируются внутренние перегородки и стены, затем осуществляется устройство основания в виде щебеночной подсыпки и бетонной подготовки. На подготовку устанавливаются рельсовые пути со шпалами. При этом соблюдается единый горизонт, обеспечивающий равномерное распределение нагрузки от здания. Пути продолжаются по всей трассе перемещения.

После устройства путей осуществляется установка ходовых балок и катучих опор. Ходовые балки выполняются в виде двутавров расчетного сечения и располагаются параллельно рельсовым путям (рис. 12.5). Они объединяются с элементами обвязочных балок, что обеспечивает их геометрическую неизменяемость в процессе передвижки здания.

Рис12.5. Схема установки здания на ходовые балки а - подъем здания гидравлическими домкратами; б - установка ходовых балок; в - план ходовых балок и обвязочной рамы для передвижения жилого дома; ГД - гидравлический домкрат; ДД - датчик давления; МШ - материальный шланг; 1 - перемещаемое здание; 2 - обвязочный пояс; 3 - ходовые балки; 4 - катучие опоры; 5 - рельсовый путь; 6 - шпалы; 7 - бетонная подготовка основания; 8 - связи для объединения обвязочных балок

Большой объем работ и высокая трудоемкость легко прослеживаются на рис. 12.5,в, где приведен план ходовых балок и обвязочной рамы. Ходовые балки выполнены из двутавра № 45 и попарно объединены между собой специальными связями. Осевое расстояние составляет 4100-4200 мм. Для посадки здания на ходовые балки используется система гидравлических домкратов усилием от 200 до 500 т. Они же используются при установке здания на новые фундаменты. При подъеме и установке здания необходимо обеспечить синхронизацию работы домкратов. Неравномерность подъема или опускания отдельных частей здания неизбежно приведет к появлению трещин или разрушению конструктивных элементов.

Синхронизация работы домкратов достигается путем использования единой гидравлической насосной станции с системой материальных шлангов и управлением их работой с применением компьютерной техники. Для этой цели домкраты оснащаются датчиками давления, сигнал от которых подается на блок управления с преобразователем аналогового сигнала и регистрирующее устройство, которое обеспечивает корректировку давления на каждом из гидравлических домкратов. Использование программного управления обеспечивает автоматический режим подъема здания на требуемую высоту. При использовании гидродомкратов с ручным приводом синхронность работы достигалась путем использования геодезических приборов.

Перемещение зданий

В зависимости от средств механизации процесс передвижки зданий осуществляется двумя методами: подтягиванием и с помощью системы гидравлических домкратов.

При подтягивании используют систему полиспастов и электролебедок. В зависимости от траектории перемещения используют одно, два или несколько положений электролебедок. Для обеспечения устойчивого положения лебедки и полиспасты крепятся к якорям. Каждый из якорей рассчитывается на максимальную нагрузку, возникающую в первый момент сдвижки здания, и определенный запас которой составляет не менее 2-кратной величины максимальной нагрузки. При методе подтягивания необходимо обеспечить синхронность работы лебедок, что обеспечивается контролем параметров натяжения канатов. Для гашения инерционности передвигаемого здания используют лебедки, располагаемые с противоположной стороны (тормозные лебедки).

На рис. 12.6 приведена технологическая схема размещения тяговых лебедок и полиспастов при передвижке зданий и сооружений. Достоинством метода подтягивания является возможность непрерывной передвижки на расстояние до 50 м.

Рис12.6. Технологическая схема передвижки зданий с применением лебедок и полиспастов 1 - перемещаемый объект; 2 - полиспасты; 3 - якоря; 4 - лебедки для подтягивания объекта; 5 - тормозные лебедки

При передвижке объектов с помощью системы гидравлических домкратов используют такие же технические решения по устройству обвязочного пояса, ходовых балок и путей, как и при методе подтягивания. Домкратная система обеспечивает возможность создания мощного передвигаемого усилия. В то же время из-за достаточно малого хода штоков домкратов требуется частая перестановка упоров, а процесс перемещения носит циклический характер.

Достоинством домкратной системы является возможность обеспечения их синхронной работы, что позволяет контролировать усилия и равномерность хода.

На рис. 12.7 приведена принципиальная схема домкратной системы. Ее отличительная особенность состоит в том, что домкраты располагаются на торцах ходовых балок, а их штоки упираются на специальные кронштейны, которые, в свою очередь, крепятся механическими домкратами к рельсовому пути. По мере передвижения объекта кронштейны переставляются в соответствии с рабочим ходом штока домкратов, который составляет 500-1000 мм. При криволинейной траектории движения возможно использование домкратов с боковых сторон. Таким образом, достигается поворот здания относительно продольной или поперечной оси.

Рис12.7. Схема передвижки здания с использованием гидравлических домкратов (толкателей) 1 - обвязочные балки; 2 - ходовые балки; 3 - роликовые опоры; 4 - рельсовый путь; 5 - гидродомкраты; 6 - упорные кронштейны, фиксируемые на рельсах пути

Применение гидравлических домкратов существенно снижает трудоемкость работ по сравнению с технологией подтягивания с применением лебедок и делает данный процесс менее опасным и более технологичным.

Использование гидравлических домкратов усилием 500-1000 т с удлиненным штоком позволяет осуществлять передвижку массивных зданий и сооружений. Это обстоятельство существенно расширяет технологию и делает ее универсальной.

Применение системы датчиков давления, перемещений, скорости и других параметров позволяет организовать дистанционный контроль и управление технологическим процессом перемещения.