Гидроизоляционные материалы
Влага, контактирующая с материалом и проникающая в него, может пагубно влиять на эксплуатационные показатели материала (прочность, теплоизолирующую способность) или вызывать коррозию материала вплоть до его полного разрушения. Гидроизоляционные материалы предназначены для предохранения строительных конструкций от контакта с водой, поглощения воды или от фильтрации воды через них. В зависимости от физического состояния и соответственно технологии их применения гидроизоляционные материалы можно разделить на жидкие, пастообразные пластично-вязкие, твердые упругопластичные.
Жидкие гидроизоляционные материалымогут быть пропиточные и пленкообразующие.
Пропиточные материалы — жидкости, проникающие в поры поверхностных слоев материала либо кольматирующие (заполняющие) их, создавая водонепроницаемый барьер, либо гидрофобизирующие поверхность пор, т. е. снимающие эффект капиллярного подсоса влаги материалом.
Битумы и дегти, переведенные в жидкое состояние,— простейшие пропиточные материалы. Битумы придают пропитанному слою материала водонепроницаемость, а дегти, кроме того, антисептируют материал. Для перевода в жидкое состояние дегти и битумы можно расплавить, растворить в органических растворителях или приготовить из них эмульсию.
Пропитка мономерами с последующей их полимеризацией в порах материала обеспечивает их стабильную водонепроницаемость. Наиболее перспективны для этой цели акриловые мономеры. Их полимеризация возможна с помощью инициаторов, введенных в пропитывающую жидкость.
Кремнийорганические жидкости — эффективный пропиточный материал, гидрофобизирующий (придающий водоотталкивающие свойства) пористые материалы. Эти вещества имеют высокую проникающую способность, они атмосферостойки и термостойки. Жидкости не имеют цвета и запаха и не изменяют внешний вид пропитываемого материала.
Самая распространенная гидрофобизирующая кремнийорганическая жидкость. После высыхания на стенках пор и самом материале образует тончайшую гидрофобную пленку, прочно скрепленную с материалом. Она не позволяет воде входить в поры материала, но при этом материал сохраняет паропроницаемость.
Инъекционные материалы нагнетают в поры изолируемого материала под давлением. В качестве инъекционных могут использоваться не только все пропиточные, но и более вязкие жидкости (например, эпоксидные смолы, полимерные дисперсии). Принудительное нагнетание гидроизоляционного материала в конструкцию обеспечивает более высокую водонепроницаемость образующегося защитного слоя, чем свободная пропитка, но его выполнение значительно сложнее и дороже пропитки.
Пленкообразующие материалы — вязкожидкие составы, которые после нанесения на поверхность изолируемой конструкции образуют на ней водонепроницаемую пленку. Образование пленки происходит либо в результате улетучивания растворителя, либо в результате полимеризации. Среди пленкообразующих веществ наибольшее распространение получили разжиженные битумы и битумные эмульсии, лаки и эмали.
Битумные эмульсии готовят в гомогенизаторах (высокоскоростных смесителях). В них расплавленный битум диспергируют в горячей воде (85...90 °С), в которой предварительно растворяют поверхностно-активные вещества — эмульгаторы, обеспечивающие стабильность эмульсии. Эмульсии могут модифицироваться полимерами и латексами каучуков. Пропитка эмульсиями целесообразна для влажных материалов.
Пастообразные гидроизоляционные материалы используют как обмазочные и приклеивающие. Обмазочные материалы после нанесения образуют на изолируемой поверхности достаточно толстый гидроизоляционный слой. К обмазочным материалам относят мастики и пасты — пластично-вязкие системы с ярко выраженными тиксотропными свойствами. Это означает, что они при нанесении на поверхность тем или иным инструментом разжижаются, а затем переходят в твердообразное состояние.
Мастики получают смешиванием органических вяжущих с минеральными наполнителями и специальными добавками (пластифицирующими, структурирующими и др.). По виду вяжущего различают мастики битумные, битумно-полимерные и полимерные; реже используются дегтевые.
Самые распространенные мастики — битумные. Они относительно дешевы и имеют хорошую адгезию к большинству материалов. Выпускают такие мастики в двух вариантах: холодные, готовые к употреблению (они содержат растворитель), и горячие, нуждающиеся для перевода в рабочее состояние в нагреве до 160... 180 °С.
Мастики в качестве приклеивающего материала (например, для наклейки рулонной гидроизоляции) и в качестве материала, образующего гидроизоляционный слой на обрабатываемой конструкции (например, для обмазки наружных поверхностей стен подвалов и фундаментов). Полимерные мастики применяют также для устройства антикоррозионных покрытий на бетонных и металлических конструкциях, работающих в агрессивных средах.
Пасты получают на основе битумов и дегтей путем их диспергирования в присутствии твердого эмульгатора (глины, извести и т. п.). В обычных битумно-глиняных пастах размер частиц битума 0,1...0,15 мм.
Пасты хорошо смешиваются с наполнителями (песком) и легко наносятся даже на влажные поверхности; после высыхания пасты капли битума сливаются, образуя сплошное покрытие.
Упругопластичные гидроизоляционные материалыпредставлены рулонными материалами (безосновными и на различных основах), аналогичные кровельным. Как уже говорилось, в отличие от кровельных гидроизоляционные материалы не подвергаются солнечному излучению, но постоянно находятся во влажных условиях, где на первое место выходит гнилостойкость.
Первыми рулонными гидроизоляционными материалами были толь и рубероид (без бронирующей посыпки). Долговечность этих материалов ограничена низкой гнилостойкостью кровельного картона. При этом толь за счет пропитки дегтем более долговечен в роли гидроизоляционного материала.
В современных рулонных гидроизоляционных материалах для повышения долговечности и надежности используют битумные и полимербитумные материалы на негниющих основах.
Гидростеклоизол — битумный гидроизоляционный материал, состоящий из стекловолокнистой основы, на которую с двух сторон нанесен слой битумного вяжущего, состоящего из битума, минерального наполнителя (20 % от массы вяжущего) и пластификатора. Материал укрепляется на изолируемой поверхности путем оплавления пламенем газовоздушных горелок ; рекомендуемая температур» работ при укладке — не ниже 10 °С.
Значительно эффективнее битумно-полимерные материалы Мостопласти Техноэласто-Мост,имеющие основу из полиэфирного волокна. Эти материалы эксплуатируются в интервале температур от +100 до —25 °С, относительное удлинение при разрыве 35...40.Материалы обеспечивают водонепроницаемость при давлении 0,2 МПа. Они употребляются для гидроизоляции тоннелей метрополитена, пролетных строений мостов и путепроводов, подвалов, бассейнов и т. п. Для кровельных работ не рекомендуется.
- Министерство образования и науки Республики Казахстан
- Введение
- Глоссарий «Строительные материалы»
- 2 Краткий курс лекций
- 2.1 Введение. Классификация строительных материалов. Строение и основные свойства строительных материалов Введение
- Классификация строительных материалов Строительные материалы классифицируются по различным признакам.
- Требования предъявляемые к строительным материалам
- Физические свойства
- Гидрофизические свойства материалов
- Теплофизические свойства материалов
- Физические свойства технологического характера.
- Комплексные свойства материалов.
- Эстетические свойства.
- 2.2 Природные каменные материалы и сырье для производства строительных материалов из горных пород
- Изверженные породы. Глубинные породы применяемые в строительстве - гранит, сиенит, диорит, габбро.
- Осадочные породы. Осадочные породы - являются основанием и средой для различных сооружений и доступны в качестве строительного материала.
- 2.3 Материалы, получаемые термической обработкой минерального сырья.
- 2.3.1 Керамические изделия
- Подготовку сырья: – обогащение, дробление и выделение примесей;
- Классификация керамических изделий по назначению.
- Основы производства стекла.
- Способы формования стеклянных изделий
- Классификация стеклянных материалов.
- Защита металлов в условиях пожара. Незащищенные стальные конструкции используют при до t° - 600 °с. Для повышения предела огнестойкости металлических конструкций их покрывают:
- 3.4.1 Воздушные вяжущие вещества
- Гипсовые и гипсобетонные материалы и изделия
- Известь воздушная. Сырье и принципы производства
- 2.4.2 Гидравлические вяжущие вещества
- Принципы производства цемента
- Основные свойства материалов на основе цементов
- 2.5 Строительные материалы на основе неорганических вяжущих веществ
- 2.5.1 Бетоны. Тяжелые бетоны. Легкие бетоны
- Тяжелые бетоны
- Легкие бетоны
- 2.5.2 Силикатные материалы и изделия. Асбестоцементные изделия Силикатные материалы и изделия
- Асбестоцементные изделия
- 2.5.3 Строительные растворы и сухие строительные смеси
- Заполнители в качестве мелкого заполнителя для приготовления строительных растворов применяют следующие материалы:
- 2.6 Строительные материалы на основе органического сырья
- Сортамент лесных материалов.
- Свойства древесины.
- 2.6.2 Полимерные материалы
- Номенклатура материалов и изделий из полимеров.
- 2.7 Строительные материалы специального назначения
- 2.7.1 Кровельные, гидроизоляционные и герметизирующие материалы.
- Гидроизоляционные материалы
- Герметизирующие материалы
- 2.7.2 Теплоизоляционные и акустические материалы
- 2.7.3 Отделочные материалы Классификация отделочных материалов.
- 2.8 Композитные материалы
- Преимущества композиционных материалов
- Понятие о кристаллических и амфорных телах. Понятие о твердости, износостойкости их размерность.
- Ход работы:
- 1.1 Определение плотности.
- 1.2 Определение плотности на образцах неправильной формы
- Плотность вычисляют по той же формуле
- Объем образца определяют из выражения
- 1.3 Определение плотности (насыпной) сыпучих материалов
- 1.4 Определение удельной массы
- 1.5 Определение весового и объемного водопоглощения
- 1.6 Определение пористости и пустотности материала
- 1.7 Определение морозостойкости строительных материалов
- 2.1 Изучение свойств породообразующих минералов
- 2.2 Основные определения и понятия
- 3.3 Определение марки кирпича
- Предел прочности при изгибе считают по формуле
- Значение относительного удлинения, б, %, вычисляют по формуле
- 6.I Определение тонкости помола гипса
- 6.3 Определение сроков схватывания гипсового теста
- 6.4 Определение предела прочности при изгибе и сжатии образцов из гипса
- 7. 1 Определение содержания в извести активных СаО и MgО
- 7.2 Определение содержания в извести непогасившихся зерен
- 7.3 Определение температуры и скорости гашения извести
- Результаты испытания записывают в таблицу
- Определение сроков схватывания цементного теста (гост 310.3-76)
- Определение равномерности изменения объема цемента (гост 310.3-76)
- 9.2 Определениезернового состава щебня (гравия)
- 9.3 Определение прочности щебня (гравия)
- 10.1 Материалы рекомендуемые для бетона
- Назначение марки цемента в зависимости от класса бетона
- 10.2 Подбор состава бетона по первому способу
- 10.3 Экспериментальная проверка и корректировка состава бетона
- 10.4 Производственный состав бетона и расчет материалов на замес бетономешалки
- 10.5 Подбор состава бетона с химическими добавками
- 10.5 Подбор состава бетона по второму способу выполняют в такой последовательности:
- 10.6 Выполняем расчет ориентировочного состава бетона
- Пустотность щебня, определенная по формуле , составляет
- 10.7 Вычисляем расход материалов в киллограммах на пробный замес бетона после корректировки содержания материалов
- Состав бетона можно выразить в виде соотношения:
- 11.1 Определение прочности бетона при сжатии
- 11.2 Определение прочности бетона на осевое растяжение
- 11.3 Определение прочности бетона на растяжение при изгибе
- 11.3 Определение морозостойкости бетона (гост 10060.0-95)
- 12.1 Изучение строения древесины. Работа с каталогами образцов древесины
- 3.12. 2 Определение физических свойств древесины
- В тангентальном направлении
- Объемную усушку Voвычисляют с точностью до 0,1 % по формуле
- 12.3 Определение предела прочности при сжатии вдоль волокон
- - Для образцов с влажностью меньше предела гигроскопичности
- Предел прочности образцов пересчитывают на влажность 12 % по формуле
- 13.1 Определение гранулометрического состава
- 13.2 Исследование зависимости коэффициента вспучивания вермикулита от технологических факторов
- 13.3 Подбор оптимальной продолжительности вспучивания
- 14.1 Определение теплостойкости пластических масс по Мартенсу
- 14.2 Определение твердости пластических масс по Бринеллю
- 15.3 Определение маслоемкости.
- 15.4 Определение цвета
- 15.5 Определение вязкости
- 3.15.6 Определение скорости высыхания
- 2 Вопросы для подготовки к Рубежному контролю и экзаМену
- 2.1 Темы и вопросы для подготовки для рубежного контроля
- 2.2 Дополнительные вопросы для подготовки к экзамену